plantpredict-python Documentation
Release 1.0.5

Stephen Kaplan

Oct 02, 2023

Contents

1 Contents 3
.1 Installation & SEtUp o o i e e e e e e e e e e e 3
1.2 API Authentication i i e e e e e e e e e e e e e 4
1.3 SDKReference e e e e e e 7
1.4 Example Usage o o v i i e e e e e 53
1.5 Release NOteSs o i e e e e e e 66
2 Indices and tables 67
Python Module Index 69
Index 71

plantpredict-python Documentation, Release 1.0.5

PlantPredict is a web-based, utility-scale energy prediction software package. This Python software development kit
provides a library to access the full functionality of PlantPredict via its APL.

Full documentation on the backend algorithms used in PlantPredict is available here.

The source code for plantpredict-python is available on GitHub.

Contents 1

https://plantpredict.com/algorithm/introduction/
https://github.com/plantpredict/python-sdk

plantpredict-python Documentation, Release 1.0.5

2 Contents

CHAPTER 1

Contents

1.1 Installation & Setup

This SDK is currently compatible with Python 3.6/3.7 and backwards-compatible with Python 2.7. However, future
versions may lose Python 2.7 compatibility due to official end of support of the Python 2 language on January 1, 2020.
There are a variety of ways to set up a Python 3 environment and install this library. For the sake of simplicity, a gen-
eralized “basic” installation guide and a guide for users of the Anaconda Distribution are provided. The recommended
setup for all users (including those new to Python/coding) is that of the Anaconda distribution, as it is more prevalent
in the scientific and engineering community.

1.1.1 Setup Guide Using the Anaconda Distribution (Recommended)

The Anaconda Distribution is recommend if you are a scientist, engineer, researcher, or student. It comes bundled with
many useful Python scientific/numerical libraries, a GUI for managing the libraries, and several open-source software
development tools. Most importantly, just like the standard distribution of Python, it is free and open-source.

1. Install the latest version of the Anaconda Distribution, if not already installed.

2. (Optional, but recommended). Open the “Anaconda Prompt” terminal that comes with the Anaconda distribu-
tion, navigate to your project’s directory and follow instructions for creating a conda environment and activating
a conda environment.

3. Install the plantpredict package to your environment by typing the command pip install
plantpredict into the terminal. (Note: plantpredict is not yet available via conda install/the
Anaconda Navigator GUI, but will be added to conda-forge in future versions).

4. Follow the steps in API Authentication to obtain API credentials and authenticate with the server.

5. Use the tutorials in Example Usage as a starting point for your own scripting and analysis. Detailed documen-
tation on each class and method can be found in SDK Reference.

https://www.anaconda.com/download/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment
https://conda-forge.org/

plantpredict-python Documentation, Release 1.0.5

1.1.2 Basic Installation

1. Install the latest version of Python, if not already installed.

2. (Optional, but recommended) Create a virtual environment. Open a terminal/command prompt, navigate to your
new project’s directory, and follow the instructions for installing and activating a virtualenv.

3. Install plantpredict via pip by typing the command pip install plantpredict into the terminal.
4. Follow the steps in API Authentication to obtain API credentials and authenticate with the server.

5. Use the tutorials in Example Usage as a starting point for your own scripting and analysis. Detailed documen-
tation on each class and method can be found in SDK Reference.

1.2 API Authentication

PlantPredict uses the Amazon Cognito & OAuth 2.0 API for administering and managing access tokens. If you are a
first time user of the PlantPredict API, you need a set of client credentials (client ID, and client secret).

1.2.1 Step 1: Generate/receive client credentials.

“I have never used PlantPredict and need an account”.

Simply navigate to https://ui.plantpredict.com/signUp, provide the necessary information and complete your account
registration.

“I have a PlantPredict account and am the company administrator.”

If you are the only person with a PlantPredict account in your organization/company, or the first person to have an
account, you are likely the company admin. If you are a company admin, you will have a gear icon next to your name
on the very bottom-left of the page when you log in on a web browser.

Click the gear icon. On the next page, search for the name of the person you would like to generate client credentials
for, and click on their name.

4 Chapter 1. Contents

https://www.python.org/downloads/
https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv
https://pip.pypa.io/en/stable/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://ui.plantpredict.com/signUp

plantpredict-python Documentation, Release 1.0.5

Terabase Energy
W Active

Déveloper [:} Strategic Annual 10ct 2024

Subse

United States of America EPC - 51392 -

Search @
| Jesse|

T v | ACTIVE ACCOUNTS ¥ PENDING ACCOUNTS X

jo!

Jesse Milam
M Actlve

Job Title Cost Cente User Type
|milamarterabase.energy Software Developer - Admin

Click on “Generate API Credentials” on the top right of the next page.

EDITPROFALE [

Generate APl Credentials

Copy each credential to your clipboard to be stored securely (step 2).

1.2. API Authentication 5

plantpredict-python Documentation, Release 1.0.5

Credentials Generated Successfully

Any AP calls made using these client credentials will appear as though they are from this user. This
means all data that Is generated (projects, predictions, etc) will be visible to this user In the application
Interface.

ClientID CopyID

.--..P LB B]

Cllent Secret Copy Secret

Be sure to store your client credentials In a secure place because they cannot be displayed here again. If
they are lost, new credentlals must be generated.

Copy All Credentials

“I have a PlantPredict account but am not the company administrator.”

Contact the person in your organization who is the company admin, and provide to them a link to this page.

1.2.2 Step 2: Store your API credentials securely.

1.2.3 Step 3: Authenticate and receive a token.

At the beginning of any script/Python session, execute the following code to authenticate with the PlantPredict servers
to generate an access token, which is stored on an Ap 1 object.

import

The Api object is then used to instantiate other PlantPredict entities (see Example Usage).

Warning: The access token will expire after 1 hour. If your script requires more than one hour to complete, the
SDK will automatically generate a new token using a refresh token.

6 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

1.3 SDK Reference

Detailed information on how to use PlantPredict can be found in the User Manual. The manual is written in the context
of PlantPredict’s GUI, but is fully applicable to the API. Additional documentation for the general PlantPredict API,
including a full list of endpoints and their respective inputs/outputs can be found here.

1.3.1 Classes
Api

class plantpredict.api.Api (client_id, client_secret, base_url="https://api.plantpredict.terabase.energy’,
auth_url="https://terabase-prd.auth.us-west-

2.amazoncognito.com/oauth2/token’)
Bases: object

project (**kwargs)
prediction (**kwargs)
powerplant (**kwargs)
geo (**kwargs)
inverter (**kwargs)
module (**kwargs)
weather (**kwargs)

ashrae (**kwargs)

Project

class plantpredict.project.Project (api, id=None, name=None, latitude=None, longi-

tude=None)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

The Project entity in PlantPredict defines the location info and serves as a container for any number of Predic-
tions.

create ()
POST /Project/

Creates a new plantpredict.Project entity in the PlantPredict database using the attributes as-
signed to the local object instance. Automatically assigns the resulting id to the local object instance.
See the minimum required attributes (below) necessary to successfully create a new plantpredict.
Project. Note that the full scope of attributes is not limited to the minimum required set.

Use plantpredict.Project.assign_location_attributes () to automatically assign all
required (and non-required) location-related/geological attributes.

Required Attributes

1.3. SDK Reference 7

https://plantpredict.com/user_manual/introduction/
https://api.plantpredict.terabase.energy/swagger/ui/index

plantpredict-python Documentation, Release 1.0.5

Table 1: Minimum required attributes for successful Prediction creation

Field Type| Description

name str | Name of the project

latitude float | North-South GPS coordinate of the Project location. Must be between —90
and 90 - units [decimal degrees].

longitude float | East-West coordinate of the Project location, in decimal degrees. Must be
between —180 and 180 units [decimal degrees].

country str | Full name of the country of the Project’s location.

country_code stt | Country code of the Project’s location (ex. US for United States, AUS for
Australia, etc.)

elevation float | The elevation of the Project location above seal level units [m].

stan- float | Time zone with respect to Greenwich Mean Time (GMT) in +/- hours offset.
dard_offset_from_utc

delete ()
HTTP Request: DELETE /Project/{Projectld}

Deletes an existing Project entity in PlantPredict. The local instance of the Project entity must have at-
tribute self.id identical to the project id of the Project to be deleted.

Returns A dictionary {“is_successful”: True}.
Return type dict

get ()
HTTP Request: GET /Project/{Id}

Retrieves an existing Project entity in PlantPredict and automatically assigns all of its attributes to the local
Project object instance. The local instance of the Project entity must have attribute self.id identical to the
project id of the Project to be retrieved.

Returns A dictionary containing all of the retrieved Project attributes.
Return type dict

update ()
HTTP Request: PUT /Project

Updates an existing Project entity in PlantPredict using the full attributes of the local Project instance.
Calling this method is most commonly preceded by instantiating a local instance of Project with a specified
project id, calling the Project.get() method, and changing any attributes locally.

Returns A dictionary {“is_successful”: True}.
Return type dict

get_all_predictions (**kwargs)
HTTP Request: GET /Project/{Projectld }/Prediction

Retrieves the full attributes of every Prediction associated with the Project.
Returns A list of dictionaries, each containing the attributes of a Prediction entity.
Return type list of dict

search (latitude, longitude, search_radius=1.0)
HTTP Request: GET /Project/Search

Searches for all existing Project entities within a search radius of a specified latitude/longitude.

Parameters

8 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

* latitude (float) — North-South coordinate of the Project location, in decimal de-
grees.

* longitude (float)— East-West coordinate of the Project location, in decimal degrees.
e search_radius (float) — search radius in miles
Returns TODO
assign_location_attributes (**kwargs)

Returns

Prediction

class plantpredict.prediction.Prediction (api, id=None, project_id=None, name=None)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

The plantpredict.Prediction entity models a single energy prediction within a plantpredict.
Project.

create (use_closest_ashrae_station=True, error_spa_var=2.0, error_model_acc=2.9, er-

ror_int_ann_var=3.0, error_sens_acc=35.0, error_mon_acc=2.0, year_repeater=1, status=1)
POST /Project/ :py:attr: ‘project_id‘ /Prediction

Creates a new plantpredict.Prediction entity in the PlantPredict database using the attributes
assigned to the local object instance. Automatically assigns the resulting id to the local object instance.
See the minimum required attributes (below) necessary to successfully create a new plantpredict.
Prediction. Note that the full scope of attributes is not limited to the minimum required set. Important
Note: the minimum required attributes necessary to create a plantpredict.Prediction is not
sufficient to successfully call plantpredict.Prediction.run().

Required Attributes

Table 2: Minimum required attributes for successful Prediction creation

Field Type | Description

name str Name of prediction

project_id int ID of project within which to contain the prediction
year_repeater | int Must be between 1 and 50 - unitless.

Example Code

First, import the plantpredict library and receive an authentication [EDIT THIS] plantpre-
dict.self.api.access_token in your Python session, as shown in Step 3 of API Authentication. Then in-
stantiate a local Prediction. object.

Populate the Prediction’s require attributes by either directly assigning them. ..

from import

... OR via dictionary assignment.

1.3. SDK Reference 9

plantpredict-python Documentation, Release 1.0.5

Create a new prediction in the PlantPredict database, and observe that the Module now has a unique
database identifier.

Returns A dictionary containing the prediction id.
Return type dict
delete()
HTTP Request: DELETE /Project/{ Projectld }/Prediction/{1d }

Deletes an existing Prediction entity in PlantPredict. The local instance of the Project entity must have
attribute self.id identical to the prediction id of the Prediction to be deleted.

Returns A dictionary {“is_successful”: True}.
Return type dict

get (id=None, project_id=None)
HTTP Request: GET /Project/{Projectld}/Prediction/{Id}

Retrieves an existing Prediction entity in PlantPredict and automatically assigns all of its attributes to the
local Prediction object instance. The local instance of the Prediction entity must have attribute self.id
identical to the prediction id of the Prediction to be retrieved.

Returns A dictionary containing all of the retrieved Prediction attributes.
Return type dict

update ()
HTTP Request: PUT /Project/{Projectld }/Prediction

Updates an existing Prediction entity in PlantPredict using the full attributes of the local Prediction in-
stance. Calling this method is most commonly preceded by instantiating a local instance of Prediction
with a specified prediction id, calling the Prediction.get() method, and changing any attributes locally.

Returns A dictionary {“is_successful”: True}.
Return type dict

run (**kwargs)
POST /Project/{Projectld }/Prediction/{ Predictionld }/Run

Runs the Prediction and waits for simulation to complete. The input variable “export_options” should take
the

Parameters export_options — Contains options for exporting
Returns

get_results_summary (**kwargs)
GET /Project/{Projectld }/Prediction/{1d }/ResultSummary

10 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

get_results_details (**kwargs)
GET /Project/{Projectld }/Prediction/{1d }/ResultDetails

get_nodal_data (**kwargs)
GET /Project/{Projectld }/Prediction/{1d }/NodalJson

clone (**kwargs)
Parameters new_prediction_name -
Returns

change_status (**kwargs)
Change the status (and resulting sharing/privacy settings) of a prediction (ex. from
py:attr:DRAFT_PRIVATE to py:attr:DRAFT-SHARED.

Parameters

* new_status (int)— Enumeration representing status to change prediction to. See (or
import) plantpredict.enumerations.PredictionStatusEnum.

* note (str)— Description of reason for change.

Returns

PowerPlant

class plantpredict.powerplant.PowerPlant (api, project_id=None, prediction_id=None,

use_cooling_temp=True, **kwargs)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

Represents the hierarchical structure of a power plant in PlantPredict. There is a one-to-one relationship be-
tween a PowerPlant and Prediction. Itis linked to that prediction via the attributes project_id and
prediction_id.

All classes that inherit from PlantPredictEntity follow the same general usage pattern. The core class
methods (get, create, and update) require that certain attributes be assigned to the instance of the class
in order to run successfully, rather than requiring direct variable inputs to the method call itself. For methods
beyond these four, the input requirements might be either attribute assignments or variable inputs to the method.

Sample code for properly building a PowerPlant can be found in Example Usage. While a new
PowerPlant can be initialized viaits __init__ () method, as in the following example:

it is recommended to use the Api factory method powerplant (), as in the following example:

where both cases assume that api is a properly defined Api object.

Note on parameters listed below: This list of attributes is comprehensive, but does not encompass 100% of
parameters that might be available via get () after the associated prediction is run. The list includes all relevant
attributes that a user should/can set upon building the PowerPlant, plus some of the post-prediction-run
parameters.

Parameters

* api (plantpredict.api.Api)— An properly initialized instance of the PlantPredict
API client class, Ap i, which is used for authentication with the PlantPredict servers, given
a user’s unique API credentials.

1.3. SDK Reference 11

plantpredict-python Documentation, Release 1.0.5

* project_id(int, None)-Unique identifier for the Pro ject with which to associate
the power plant. Must represent a valid, exiting project in the PlantPredict database.

* prediction_id(int, None)- Unique identifier for the Predict ion with which to
associate the power plant. Must represent a valid, existing Prediction on the given Project
in the PlantPredict database, as represented by the input project_id.

* use_cooling_temp (bool) — If True, the kva_rating of each inverter in the
power plant is calculated based on the 99.6 cooling temperature of the nearest ASHRAE
station to the corresponding Project (as specified by project_id), the elevation
of the Project, and the elevation/temperature curves of the inverter model specified
by inverter_id. Defaults to True. If False, the kva_rating of each inverter
in the power plant is set as the apparent_power of the inverter model specified by
inverter_id.

* lgia limitation (float)- Maximum power output limit for power plant according
to its Large Generator Interconnection Agreement (LGIA). Must be between 0 and 2000 -
units [MWac].

* availability loss (float) — Accounts for losses due to any plant-wide outage
events such as inverter shutdowns/failures. Must be between 0 and 25 - units [%].

* power_factor (float) - The ratio of the power that can be used and the product of the
operating current and voltage (also referred to as Plant kVA Derate). Defaults to 1 . 0. Must
be between 0 and 1, where 1 is a “unity” power factor. Defaultsto 1.0in __init__ ()
and automatically recalculated when create () called.

* transformers (1ist) — Defaults to an empty list ([]1). See “Example contents of
transformers” below for sample contents. Use the “power plant builder” method
add_transformer () to easily add a new transformer to the attribute t ransformers.

* transmission_lines (1ist)— Defaults to an empty list ([]). See “Example contents
of transmission_lines” below for sample contents. Use the “power plant builder”
method add_transmission_line () to easily add a new transmission line to the at-
tribute transmission_lines.

* blocks (1ist) — Defaults to an empty list ([]). See “Example contents of blocks”
below for sample contents. Use the “power plant builder” method add_block () to easily
add a new block to the attribute blocks. Subsequently use the methods add_array (),
add_inverter (),and add_dc_field () tobuild out the full power plant hierarchical
structure.

Below are some samples of the more complex attributes that would be populated after calling get () on an
existing power plant in PlantPredict. This also is a sample of what the contents might look like before creating
a new powerplant with create () (or update an existing one with update ():

Example contents of t ransformers

Example contents of transmission_lines

12

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Example contents of blocks

(continues on next page)

1.3. SDK Reference 13

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

o (continues on next page)

14 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

[

create ()
POST /Project/ project_id /Prediction/ prediction_id /PowerPlant

Creates a new power plant in the PlantPredict database with the attributes assigned to the instance of
PowerPlant. Automatically attaches it to a project/prediction existing in PlantPredict associated with
the assigned values for project_id and prediction_id. Also automatically calculates the aver-
age power factor (plant design derate) based on the power factors of each inverter. See PowerPlant
documentation attributes required to successfully call this method.

Returns Dictionary with contents { 'is_successful': True}.
Return type dict

get ()
GET /Project/ project_id /Prediction/ prediction_id /PowerPlant

Retrieves an existing PowerPlant from the PlantPredict database according to the values assigned for
project_idand prediction_id, and automatically assigns all of its attributes to the object instance.

Returns A dictionary containing all of the retrieved PowerPlant attributes. (Matches the
contents of the attributes ___dict___ after calling this method).

Return type dict
get_json ()
update_from_json (json_power_plant=None)

update ()
PUT /Project/ project_id /Prediction/ prediction_id /PowerPlant

Updates an existing PowerPlant entity in PlantPredict using the full attributes of the object instance.
Calling this method is most commonly preceded by instantiating an PowerPlant object with a particular
project_idand prediction_id and calling get (), and changing any attributes locally.

Returns Dictionary with contents { 'is_successful': True}.
Return type dict

add_transformer (rating, high_side_voltage, no_load_loss, full_load_loss, ordinal)
Appends a transformer to the attribute t ransformers to model the system-level of the power plant.

Parameters

* rating (float) — Transformer rating. Must be between 0.1 and 10000.0 - units
[MVA].

1.3.

SDK Reference 15

plantpredict-python Documentation, Release 1.0.5

* high_side_voltage (float) — Transformer voltage. Must be between 1.0 and
1000.0 -units [kV].

* no_load_loss (float) — Transformer loss at no load. Must be between 0.0 and
10.0 -units [%].

e full load_ loss (float)— Transformer loss at full load. Must be between 0. 0 and
10.0 - units [%].

* ordinal (int) - Order in sequence of transformers and
transmission_lines where 1 represents the closest entity to the power plant/farthest
entity from the energy meter (1-indexed).

add_transmission_line (length, resistance, number_of _conductors_per_phase, ordinal)
Appends a transmission line to the attribute t ransmission_lines to model the system-level of the

power plant.
Parameters

* length (float) — Length of transmission line. Must be between 0.1 and 100.0 -
units [km].

* resistance (float) — Transmission line resistivity (per 300m). Must be between
0.001 and 2 - units [Ohms/300m].

* number_of_conductors_per_phase (int) — Number of conductors per phase.
Must be between 1 and 10.

* ordinal - Order in sequence of transformers and transmission_lines
where 1 represents the closest entity to the power plant/farthest entity from the energy
meter (1-indexed).

add_block (**kwargs)
A “power plant builder” helper method that creates a new block and appends it to the attribute blocks.
Block naming is sequential (numerically) - for instance, if there are 2 existing blocks with names 1 and 2
(accessible via key name on each block in list), the next block created by add_block () will automati-
cally have name equal to 3. This method does not currently account for the situation in which an existing
power plant has blocks named non-sequentially.

Note that this addition is not persisted to PlantPredict unless update () is subsequently called.
Parameters

* use_energization_date (bool) — Enables use of energization date in power plant
block. Defaults to False.

* energization_date (str) — Timestamp representing energization date of block.
Uses format 2019-12-26T16:43:55.867Z and defaults to "".

Returns Name of newly added block.
Return type int

clone_block (**kwargs)

A “power plant builder” helper method that clones (copies) an existing block (and all of its children ar-
rays/inverters/DC fields) and appends it to attribute blocks. Particularly useful when you want to create
a new block that is similar to an existing block. Block naming is sequential (numerically) - for instance, if
there are 2 existing blocks with names :py:data‘l‘ and 2 (accessible via key name on each block in list),
the next block created by c1one_block () will automatically have :py:data‘name‘ equal to :py:data‘3“.
This method does not currently account for the situation in which an existing power plant has blocks named
non-sequentially.

Note that this addition is not persisted to PlantPredict unless update () is subsequently called.

16

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Parameters block_id_to_clone (int) - Unique identifier of the block you wis you clone.
Can be found in the relevant block dictionary (in list se1f .blocks) with key id.

Returns Name of newly cloned block.

Return type int

add_array (**kwargs)
A “power plant builder” helper method that adds an array to the block specified by block_name on
the PowerPlant. Array naming is sequential (numerically) - for instance, if there are 2 existing arrays
with names 1 and 2 (accessible via key name for a given array dictionary), the next array created by
add_array () will automatically have name equal to 3. This method does not currently account for the
situation in which an existing power plant has arrays named non-sequentially.

Note that this addition is not persisted to PlantPredict unless update () is subsequently called.

Parameters

block_name (int) — Name (l-indexed integer) of the parent block to add the array to.
Can be found in the relevant block dictionary (in attribute blocks) with key id. This
value is returned for a new block when you create one with add_block (). Must be
between 1 and 99.

transformer_enabled (bool) — If True, enables a medium-voltage (MV) trans-
former for the array. Defaults to True.

match_total_inverter_kva (bool) — If True, the transformer size will
match the total inverter kVA of the inverter behind the transformer, and the input
transformer_kva_rating won’t be used. Defaults to True.

transformer_kva_rating(float, None)- User-specified transformer kVA rat-
ing. Only used if match_total_inverter_kva is setto False. Defaults to None.
Must be between 0 and 20000 - units [kVA].

repeater (int)— Number of identical arrays of this type in the parent block. Defaults
to 1. Must be between 1 and 10000.

ac_collection_loss (float) — Accounts for ohmic losses in the AC wiring be-
tween the array and parent block. Defaults to 1.Must be between 0 and 30 - units [%].

das_load (float) — Accounts for parasitic losses due to the data acquisition system
(DAS). Can also be used for general time-constant parasitic loss accounting. Defaults to
800. Must be between 0 and 5000 - units [W].

cooling_load (float) — Accounts for losses from the power conditioning system
(PCS) shelter cooling system. Defaults to 0.0. Must be between 0 and 5000 - units
[W].

additional_losses (float)— Additional night time losses. Defaults to 0. Must be
between 0 and 20000 - units [W].

transformer_high_side_voltage (f1oat)— Transformer high side voltage (the
AC collection line voltage defines the high-side of a MV inverter). Defaults to 34 . 5. Must
be between 0 and 66 - units [V].

transformer no_load_loss (float) — Accounts for transformer losses with no
load. Defaults to 0. 2. Must be between 0 and 10 - units [%].

transformer_ full load_loss (float) — Accounts for transformer losses with
full load. Defaults to 0. 7. Must be between 0 and 10 - units [%].

description (str) — Description of the array. Must be 250 characters or less. De-
faults to " ".

1.3. SDK Reference

17

plantpredict-python Documentation, Release 1.0.5

Raises ValueError — Raised if block_name is not a valid block name in the existing power
plant.

Returns The name of the newly added array.

Return type int

add_inverter (**kwargs)

A “power plant builder” helper method that adds an inverter to an array specified by array_name, which
is a child of a block specified by block_name on the PowerPlant. Inverter naming is sequential
(alphabetically) - for instance, if there are 2 existing inverters with names "A" and "B" (accessible via
key name for a given inverter dictionary), the next array created by add_inverter () will automatically
have name equal to "C". This method does not currently account for the situation in which an existing
power plant has inverters named non-sequentially.

The inverter :py:data:’kva_rating‘ will be set based on the power plant-level attribute
use_cooling_temp. If use_cooling_temp is True, this value is automatically calculated
based on the 99.6 cooling temperature of the nearest ASHRAE station to the corresponding Pro ject (as
specified by the attribute project_id), the elevation of the Project, and the elevation/temperature
curves of the inverter model specified by inverter_id. If use_cooling_temp is False, then
kva_ratingis set as the apparent_power of the inverter model specified by inverter_id.

Note that this addition is not persisted to PlantPredict unless update () is subsequently called.
Parameters

* block_name (int)— Name (l-indexed integer) of the parent block to add the inverter
to. Can be found in the relevant block dictionary (in attribute b1 ocks) with key id. This
value is returned for a new block when you create one with add_block (). Must be
between 1 and 99.

* array_name (int)— Name (1-indexed integer) of the parent array to add the inverter
to. This value is returned for a new array when you create one with add_array (). Must
be between 1 and 99.

e inverter_id (int)- Unique identifier of an inverter model in the PlantPredict Inverter
database to use.

* setpoint_kw (float, None) - Inverter setpoint. Must be between 1 and 10000
- units [kwW]. If left as default (None), will be automatically calculated as the product
between power_factor and the inverter kVA rating.

* power_factor (float) — The ratio of the power that can be used and the product of
the operating current and voltage (also referred to as design derate). Must be between 0
and 1, where 1 is a “unity” power factor. Defaults to 1. 0.

* repeater (int) — Number of identical inverters of this type in the parent array. Must
be between 1 and 10000. Defaults to 1.

Raises ValueError — Raised if block_name is not a valid block name in the existing power
plant, or if the block_name is valid but array_name is not a valid array name in the
block. Also raised if setpoint_kw is not None and power_factorisnotl.0.

Returns The name of the newly added inverter.

Return type str

calculate_post_to_post_spacing_ from_gcr (**kwargs)

Useful helper method for calculating post_to_post_spacing based on a desired ground coverage
ratio (GCR). post_to_post_spacing is arequired input for add_dc_field().

Parameters

18

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

* ground_coverage_ratio (float)— Ratio of collector bandwidth to row spacing -
units [decimal].

* module_id (int)— Unique identifier of the module to be used in the DC field.

* modules_high (int)— Number of modules high per table (number of ranks). Must be
between 1 and 50.

* module_orientation (int, None)— Represents the orientation (portrait or land-
scape) of modules in the DC field. If left as default (None), is automatically set as
the module_orientation of the module model specified by module_id. Use
ModuleOrientationEnum.

* vertical_intermodule_gap (float) — Vertical gap between each module on
the mounting structure. Defaults to 0.02. Must be between 0 and py:data:/ - units
:py:data:‘[m]’.

Returns Post to post spacing (row spacing) of DC field - units [m].
Return type float

static calculate_field _dc_power_from_dc_ac_ratio (dc_ac_ratio, inverter_setpoint)
Useful helper method for sizing the DC field capacity (field_dc_power) based on a desired DC AC
ratio and known inverter setpoint. £ield_dc_power is a required input for add_dc_field ().

Parameters

* dc_ac_ratio (float)— Ratio of DC capacity of DC field to the AC capacity/inverter
setpoint.

* inverter setpoint (float) — Setpoint of parent inverter to the DC field. Can
be found with key setpoint_kw in the dictionary representing the inverter. Must be
between 1 and 10000 - units [kKW].

Returns DC capacity for a DC field - units [kW].
Return type float

add_dc_field (**kwargs)
A “power plant builder” helper method that adds a DC field to an inverter specified by inverter_name,
which is a child of the array array_name, which is a child of a block specified by block_name on the
PowerPlant. DC field naming is sequential (numerically) - for instance, if there are 2 existing DC fields
with names 1 and 2 (accessible via key name for a given DC field dictionary), the next array created by
add_dc_field () will automatically have name equal to 3. This method does not currently account
for the situation in which an existing power plant has DC fields named non-sequentially.

Note that this addition is not persisted to PlantPredict unless update () is subsequently called.
Parameters

* block_name (int)— Name (l-indexed integer) of the parent block to add DC field to.
Can be found in the relevant block dictionary (in attribute blocks) with key id. This
value is returned for a new block when you create one with add_block (). Must be
between 1 and 99.

* array_name (int) — Name (1-indexed integer) of the parent array to add DC field to.
This value is returned for a new array when you create one with add_array (). Must be
between 1 and 99.

* inverter_name (str)— Name (letter) of the parent array to add the DC field to. This
value is returned for a new array when you create one with add_inverter (). Must be
only 1 character.

1.3. SDK Reference 19

plantpredict-python Documentation, Release 1.0.5

* module_id (int)— Unique identifier of the module to be used in the DC field.

* tracking_type (int) — Represents the tracking type/mounting structure (Fixed Tilt
or Tracker) of the DC field. Use TrackingTypeEnum. (Seasonal Tilt currently not
supported in this package).

* modules_high (int)— Number of modules high per table (number of ranks). Must be
between 1 and 50.

* modules_wired_in_series (int)- The number of modules electrically connected
in series in a string.

* post_to_post_spacing (float)— Row spacing. Must be between 0.0 and 50.0
- units [m].

e number_of_rows (int, None)— Number of rows of tables in DC field. Must be
between 1 and 10000. Defaults to 1.

e strings_wide (int) — Number of strings across per table. Multiplied by
modules_wired_in_series to determine modules_wide. Must result in
modules_wide between 1 and 100. Defaults to 1.

» field dc_power (float, None)- DC capacity of the DC field. Defaults to None.
Non-null value required if number_of_series_strings_wired_in_parallel
is None and must be between 1 and 20000 - units [kW].

* number_of_ series_strings_wired_in_parallel (float, None) -
Number of strings of modules electrically connected in parallel in the DC field. Defaults
to None. Non-null value required if field_dc_power is None, and must be between
1 and :py:data‘10000°.

* module_tilt (float, None) — Tilt angle of modules in DC Field for a fixed tilt
array. Defaults to None. Non-null value required required if t racking_type is equal
to FIXED_TILT, and must be between 0 and 90 - units [degrees].

* module_orientation (int, None)— Represents the orientation (portrait or land-
scape) of modules in the DC field. If left as default (None), is automatically set as
the module_orientation of the module model specified by module_id. Use
ModuleOrientationEnum.

e module_azimuth (float, None)- Orientation of the entire DC field. The conven-
tion is 0.0 degrees for North-facing arrays. If left as default (None), is set to 180. 0.
Must be between 0 and 360 - units [degrees].

* tracking backtracking type (int, None) - Represents the back-
tracking algorithm (True-Tracking or Backtracking) used in DC Field. Use
BacktrackingTypeEnum.

* minimum_tracking_ limit_angle_d (float) — Minimum tracking angle for
horizontal tracker array. Defaults to —60.0. Must be between —90 and 0 - units
[degrees].

* maximum tracking limit_angle_d (float) — Maximum tracking angle for
horizontal tracker array. Defaults to 60.0. Must be between 0 and 90 - units
[degrees].

* lateral_intermodule_gap (float) — Lateral gap between each module on the
mounting structure. Defaults to 0.02. Must be between 0 and py:data:/ - units
:py:data:‘[m]’.

20 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

* vertical_intermodule_gap (float) — Vertical gap between each module on
the mounting structure. Defaults to 0.02. Must be between 0 and py:data:/ - units
:py:data:‘[m]’.

* table_to_table_spacing (float) — Space between tables in each row. Defaults
to 0. 0. Must be between 0 and 50.

* module_quality (float, None) - Accounts for any discrepancy between manu-
facturer nameplate rating of module and actual performance. If left as default (None),
is automatically set as the module_quality of the module model specified by
module_id. Must be between —200 and 99 - units [%].

e module_mismatch_coefficient (float, None) — Accounts for losses due to
mismatch in electrical characteristics among modules in the strings of the DC fields (and
between strings in the DC field). If left as default (None), is automatically set as the
module_mismatch_coefficient of the module model specified by module_id.
Must be between 0 and 30 - units [$].

e light_induced_degradation (float, None) — Accounts for losses due to
light induced degradation. If left as default (None), is automatically set as the
light_induced_degradation of the module model specified by module_id.
Must be between 0 and 30 - units [$].

* dc_wiring_loss_at_stc (float)— Accounts for losses across all electrical wiring
in the DC field. Defaults to 1 . 5. Must be between 0 and 30 - units [%].

* dc_health (float)— Accounts for any losses related to DC health. Defaults to 1. 0.
Must be between —10 and 10 - units [%].

¢ heat_balance_conductive_coef (float, None) - Thermal loss factor (con-
stant component) of heat balance module surface temperature model. If left as default
(None), is automatically set as the heat_balance_conductive_coef of the mod-
ule model specified by module_id. Must be between 0 and 100. This value is only
used if model_temp_model is set to HEAT BALANCE for the Predict ion associ-
ated with the power plant by the attributes project_id and prediction_id.

¢ heat_balance_convective_coef (float, None)- Thermal loss factor (wind
speed component) of heat balance module surface temperature model. If left as default
(None), is automatically set as the heat_balance_convective_coef of the mod-
ule model specified by module_id. Must be between 0 and 100. This value is only
used if model_temp_model is set to HEAT BALANCE for the Predict ion associ-
ated with the power plant by the attributes project_id and prediction_id.

¢ sandia_conductive_coef (float, None) — Coefficient a for the Sandia mod-
ule surface temperature model. If left as default (None), is automatically set as the
sandia_conductive_coef of the module model specified by module_id. Must
be between -5 and 0. This value is only used if model_temp_model is setto SANDTA
for the Prediction associated with the power plant by attributes project_id and
prediction_id.

¢ sandia_convective_coef (float, None) — Coefficient b for the Sandia mod-
ule surface temperature model. If left as default (None), is automatically set as the
sandia_convective_coef of the module model specified by module_id. Must
be between -1 and 0. This value is only used if model_temp_model is setto SANDTA
for the Prediction associated with the power plant by attributes project_id and
prediction_id.

* cell_to_module_temp diff (float, None) - Difference between surface and
cell temperature of modules. If left as default (None), is automatically set as the

1.3. SDK Reference 21

plantpredict-python Documentation, Release 1.0.5

cell_to_module_temp_diff of the module model specified by module_id.
Must be between 0 and 15 - units [degrees—C].

* tracker_load loss (float) — Accounts for losses from power use of horizontal
tracker system. Defaults to 0 . 0. Must be between 0 and 100 - units [%].

* post_height (float, None) - Height of mounting structure (ta-
ble) post. Defaults to None. If left as default (None), auto-
matically calculated as ((collector_bandwidth * sin(tilt)
/ 2) + 1, where tilt is module_tilt if tracking_type

is FIXED TILT, or the largest of the absolute values of
maximum_tracking_limit_angle_d/minimum_tracking_limit_angle_d
if tracking_type is HORIZONTAI_TRACKER. However, if the calculated value is
less than 1.5, post_height is defaulted to 1.5. Must be between 0 and 50 - units
[m]. This value is only used if the module model specified with module_id is bifacial.

e structure_shading (float)— Accounts for backside of module losses from struc-
ture shading. Defaults to 0.0. Must be between 0 and 100 - units [%]. This value is
only used if the module model specified with module_id is bifacial.

¢ backside_mismatch (float, None) — Accounts for losses due to inconsistent
backside irradiance among modules in the DC field. Defaults to None. If left as de-
fault (None), is automatically set as the module_orientation of the module model
specified by module_id. Must be between 0 and 100 - units [%]. This value is only
used if the module model specified with module_id is bifacial.

Raises ValueError — Raised if block_name is not a valid block name in the exist-
ing power plant, or if the block_name is valid but array_name is not a valid ar-
ray name in the block, or if array_name is valid but inverter_name is not a
valid inverter in the array. Also raised if tracking_type is FIXED TILT and
module_tilt is None, or if tracking_type is HORIZONTAL TRACKER and
tracking_backtracking_type is None. Also raised if both field_dc_power
and :py:data‘number_of_series_strings_wired_in_parallel‘ are None or are both not None.
Also raised if tracking_type is SEASONAL_TILT.

Returns The name of the newly added DC field.
Return type int

Weather
class plantpredict.weather.Weather (api, **kwargs)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

The full contents of the Weather database entity (in JSON) can be found under “GET /Weather/{Id}” in the
general PlantPredict API documentation.

create ()
POST /Weather

Creates a new Weather entity.

Required Attributes

22 Chapter 1. Contents

https://api.plantpredict.terabase.energy/swagger/ui/index#!/Weather/Weather_Get_0
https://api.plantpredict.terabase.energy/swagger/ui/index#!/Weather/Weather_Get_0

plantpredict-python Documentation, Release 1.0.5

Table 3: Minimum required attributes for successful Weather creation

Field Type | Description
name str Name of weather file
coun- str Country code of the Weather’s location (ex. US for United States, AUS for Aus-
try_code tralia, etc.) plantpredict.Geo.get_location_info () will return this
information.
country | str Full name of the country of the Weather’s location. plantpredict.Geo.
get_location_info () will return this information.
latitude | float | North-South coordinate of the Weather location (in decimal degrees).
longi- float | East-West coordinate of the Weather location (in decimal degrees).
tude
data_proyider | Represents a weather data source. See (and/or import) plantpredict.
enumerations.WeatherDataProviderEnum for alist of options.
weather_|dBtails| The code block below contains an example of one timestamp (array element) of this
of field, as well as information on which dictionary keys are required.
dict

Returns A dictionary containing the weather id.

Return type dict

delete ()

DELETE /Weather/{ Weatherld }

Deletes an existing Weather entity in PlantPredict. The local instance of the Weather entity must have
attribute self.id identical to the weather id of the Weather to be deleted.

Returns A dictionary {“is_successful”: True}.

Return type dict

get ()

GET /Weather/{1d}

Retrieves an existing Weather entity in PlantPredict and automatically assigns all of its attributes to the
local Weather object instance. The local instance of the Weather entity must have attribute self.id identical
to the weather id of the Weather to be retrieved.

Returns A dictionary containing all of the retrieved Weather attributes.

1.3. SDK Reference

23

plantpredict-python Documentation, Release 1.0.5

Return type dict

update ()
PUT /Weather

Updates an existing Weather entity in PlantPredict using the full attributes of the local Weather object
instance. Calling this method is most commonly preceded by instantiating a local instance of Weather
with a specified weather id, calling the Weather.get() method, and changing any attributes locally.

The required fields are identical to those of plantpredict.weather.create () with the addition
of: .. csv-table:: Minimum required attributes for successful Weather creation

delim ;
header Field; Type; Description
stub-columns 1

id; int; Unique identifier of existing Weather entity.

Returns A dictionary {“is_successful”: True}.
Return type dict
get_details (**kwargs)
GET /Weather/{Id}/Detail
Returns detailed time series of Weather entity.

Returns A list of dictionaries where each dictionary contains one timestamp of detailed weather
data.

Return type list of dicts

search (**kwargs)
GET /Weather/Search

Searches for all existing Weather entities within a search radius of a specified latitude/longitude.
Parameters

e latitude (float) — North-South coordinate of the Weather location, in decimal de-
grees.

* longitude (float)— East-West coordinate of the Project location, in decimal degrees.
¢ search_radius (float) — search radius in miles

Returns #TODO

Return type list of dicts

download (**kwargs)
POST /Weather/Download/{Provider}

Parameters
e latitude (float) -

* longitude (float)—

* provider (int) — Represents a weather data source. See (and/or import)
plantpredict.enumerations.WeatherSourceTypeAPIEnum for a list of
options.

Returns #TODO

24 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Return type dict

change_status (**kwargs)
POST /Weather/Status Change the status (and resulting sharing/privacy settings) of a weather file (ex. from
py:attr:DRAFT_PRIVATE to py:attr:DRAFT-SHARED. :param int new_status: Enumeration representing
status to change weather to. See (or import)

plantpredict.enumerations.LibraryStatusEnum.

Parameters note (str)— Description of reason for change.
Returns
generate_weather (**kwargs)
Post /Weather/GenerateWeather

Returns a synthetic weather time series based on monthly data. The monthly data must be defined as a list
of dicts in a class attribute “monthly_values”

Returns A dictionary with all weather parameters, including and especially hourly synthetic
data in “weather_details”.

Return type dict

Module

class plantpredict.module.Module (api, **kwargs)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

The Module entity models all of the characteristics of a photovoltaic solar module (panel).

create ()
POST /Module

Creates anew plantpredict .Module entity in the PlantPredict database using the attributes assigned
to the local object instance. Automatically assigns the resulting id to the local object instance. See the
minimum required attributes (below) necessary to successfully create a new plantpredict .Module.
Note that the full scope of attributes is not limited to the minimum required set.

Required Attributes

1.3. SDK Reference 25

plantpredict-python Documentation, Release 1.0.5

Table 4: Minimum required attributes for successful Module creation

Field Type| Description

name str | Name of module file

model str Model number/name of module (can be the same as name)

manufacturer str | Module manufacturer

length float | Long side of the module. Must be between 0.0 and 10000 . 0 - units
[mm].

width float | Short side of the module. Must be between 0.0 and 10000. 0 - units
[mm].

cell_technology_type int | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModel TypeEnum.

construction_type int | Represents the module construction (Glass-Glass, Glass-
Backsheet). Use plantpredict.enumerations.

ConstructionTypeEnum.

stc_short_circuit_currdioht | Must be between 0.1 and 100.0 - units [A].

stc_open_circuit_voltafyeat | Must be between 0.4 and 1000 . 0 - units [V].

stc_mpp_current float | Must be between 0.1 and 100.0 - units [A].

stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].

stc_power_temp_coeffloat | Must be between —3.0 and 3.0 - units [%$/deg-C].

stc_short_circuit_currdiohttedmscbebetween —0. 3 and 2. 0 - units [$/deg-C].

stc_open_circuit_voltajeatteMpscbebetween —3.0 and 3. 0 - units [%$/deg-C].

satura- float | Must be between 1e—13 and 1e—6 - units [A].
tion_current_at_stc

diode_ideality_facton #bastcMust be between 0.1 and 5. O - unitless.

lin- float | Must be between —3.0 and 3.0 - units [$/deg-C].
ear_temp_dependerice_orn_gamma

exponen- float | Must be between 1.0 and 100 . O - unitless.
tial_dependency_on| shuni_resistance

se- float | Must be between 0.0 and 100 .0 - units [Ohms]
ries_resistance_at_stc
dark_shunt_resistancedloat | Must be between 100.0 and 100000. 0 - units [Ohms].
shunt_resistance_at| dtoat | Must be between 0.0 and 100000 . 0 - units [Ohms].
bandgap_voltage float | Must be between 0.5 and 4.0 - units [V].
heat_absorption_coefflalphaviust be between 0.1 and 1. 0.

refer- float | Must be between 400.0 and 1361.0 - units [W/m"*2].
ence_irradiance
built_in_voltage float | Required only if pv_model is plantpredict.enumerations.

PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 3.0 - units [V].

recombina- float | Required only if pv_model is plantpredict.enumerations.
tion_parameter PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be

between 0.0 and 30.0 - units [V]

Example Code

First, import the plantpredict library and create an instance of plantpredict.api.Api in your
Python session, to authenticate as shown in Step 3 of AP/ Authentication. Then instantiate a local
plantpredict.module.Module object.

26

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Populate the Module’s require attributes by either directly assigning them. ..

from impor

—

... OR via dictionary assignment.

(continues on next page)

1.3. SDK Reference

27

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Create a new module in the PlantPredict database, and observe that the Module now has a unique database
identifier.

Returns A dictionary containing the module id.

Return type dict

delete ()

DELETE /Module/ id

Deletes an existing plantpredict .Module entity in the PlantPredict database according to the id of
the local object instance.

Example Code

First, import the plantpredict library and create an instance of plantpredict.api.Api in your
Python session, to authenticate as shown in Step 3 of API Authentication. Then instantiate a lo-
cal plantpredict.module.Module object with the id of the target Module in the PlantPredict
database.

Delete the Module.

|

Returns A dictionary {“is_successful”: True}.

Return type dict

get ()

GET /Module/ id

Retrieves an existing plantpredict .Module entity from the PlantPredict database according to the
id of the local object instance, and automatically assigns all of its attributes to the local object instance.

Example Code

First, import the plantpredict library and create an instance of plantpredict.api.Api in your
Python session, to authenticate as shown in Step 3 of APl Authentication. Then instantiate a lo-
cal plantpredict.module.Module object with the id of the target module in the PlantPredict
database.

28

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Retrieve the Module from the PlantPredict database.

|

This will automatically assign all of that Module’s attributes to the local object instance. All of the at-
tributes are now readily accessible in the local Python session.

Returns A dictionary containing all of the retrieved Module attributes. (Matches the result of
calling self.__dict__ after calling this method).

Return type dict

update ()
PUT /Module

Updates an existing plantpredict .Module entity in PlantPredict using the full attributes of the lo-
cal object instance. Calling this method is most commonly preceded by instantiating a local instance
of plantpredict .Module with a specified id, calling plantpredict.Module.get (), and
changing any attributes locally.

Example Code

First, import the plantpredict library and create an instance of plantpredict.api.Api in your
Python session, to authenticate as shown in Step 3 of API Authentication. Then instantiate a lo-
cal plantpredict.module.Module object with the id of the target module in the PlantPredict
database.

Retrieve the Module from the PlantPredict database.

|

This will automatically assign all of that Module’s attributes to the local object instance. Any/all of the
attributes can now be modified locally.

Persist (update) the local changes to the PlantPredict database.

Returns A dictionary {“is_successful”: True}.
Return type dict
upload_pan_file (**kwargs)
creates a new module from a source .pan file

parse_pan_file (**kwargs)
creates a new module from a source .pan file

1.3. SDK Reference 29

plantpredict-python Documentation, Release 1.0.5

create_from_json (**kwargs)
creates a new module from a source JSON file

get_module_list (**kwargs)

Returns a list of all modules to which a user has access.

generate_single_diode_parameters_default (**kwargs)
POST /Module/Generator/GenerateSingleDiode ParametersDefault

Generates single-diode parameters from module electrical characteristics available on any standard man-
ufacturers’ module datasheet. Detailed documentation on the algorithm and assumptions can be found
here. (Note: The values in the table titled “Defaulted Inputs” are used in the algorithm and returned in the
response of this method). An example of using this method in practice can be found in Example Usage.

Required Attributes
Table 5: Minimum required attributes

Field Type| Description

cell_technology_typeint | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModel TypeEnum.

num- int | Number of cells in one string of cells - unitless

ber_of cells_in_ser|es

refer- float | Must be between 400.0 and 1361 .0 - units [W/m”2]. However, the

ence_irradiance calculation is always made at 1000 W/m"2.

refer- float | Must be between —20.0 and 80.0 - units [deg-C]. However, the

ence_temperature calculation is always made at 25 deg-C.

stc_max_power float | Must be between 0.0 and 1000.0 - units [W].

stc_short_circuit_cyrrésdt | Must be between 0.1 and 100 .0 - units [A].

stc_open_circuit_voltiget | Must be between 0.4 and 1000. 0 - units [V].

stc_mpp_current float | Must be between 0.1 and 100.0 - units [A].

stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].

stc_power_temp_cqefloat | Must be between —3.0 and 3.0 - units [%/deg—C].

stc_short_circuit_cyrrdodt tevyst dedfetween —0. 3 and 2. 0 - units [%/deg—C].

Generated Parameters

Table 6: Generated Parameters

Field Type | Description
series_resistance_at_stc float | units [Ohms]
maximum_series_resistance float | units [Ohms]
recombination_parameter float | units [V]
maximum_recombination_parameter float | units [V]
shunt_resistance_at_stc float | units [Ohms]
exponential_dependency_on_shunt_resistance | float | Defaulted to 5.5 - unitless
dark_shunt_resistance float | units [Ohms]
saturation_current_at_stc float | units [A]
diode_ideality_factor_at_stc float | unitless
linear_temp_dependence_on_gamma float | units [$/deg—C]
light_generated_current float | units [A]

Chapter 1. Contents

https://plantpredict.com/algorithm/module-file-generator/#756-2

plantpredict-python Documentation, Release 1.0.5

Returns Dictionary mirroring local module object with newly generated parameters.

Return type dict

generate_single_diode_parameters_advanced (**kwargs)
POST /Module/Generator/GenerateSingleDiode ParametersAdvanced

Solves for unknown single-diode parameters from module electrical characteristics and known single-
diode parameters. This method is considered “advanced” because it requires more inputs to generate
the remaining single-diode parameters. Whereas, the “default” method plantpredict.Module.
generate_single_diode_parameters_default () is relatively basic in that it requires less
inputs and automatically calculates more of the parameters. An example of using this method in practice
can be found in Example Usage.

Required Attributes
Table 7: Minimum required attributes

Field Typel Description

cell_technology_type int | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModelTypeEnum.

num- int | Number of cells in one string of cells - unitless

ber_of cells_in_series

refer- float | Must be between 400.0 and 1361 .0 - units [W/m"2]. However, the

ence_irradiance calculation is always made at 1000 W/m"2.

refer- float | Must be between —20.0 and 80.0 - units [deg-C]. However, the

ence_temperature calculation is always made at 25 deg-C.

stc_max_power float | Must be between 0.0 and 1000.0 - units [W].

stc_short_circuit_currdhftat | Must be between 0.1 and 100. 0 - units [A].
stc_open_circuit_voltafieat | Must be between 0.4 and 1000. 0 - units [V].
stc_mpp_current float | Must be between 0.1 and 100.0 - units [A].
stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].
stc_power_temp_coeffloat | Must be between —3.0 and 3.0 - units [%$/deg-C].
stc_short_circuit_currdivhatteMmscbebetween —0. 3 and 2. 0 - units [$/deg-C].
se- float | Must be between 0.0 and 100 . 0 - units [Ohms]
ries_resistance_at_stc
shunt_resistance_at| dtoat | Must be between 0.0 and 100000 . 0 - units [Ohms].
dark_shunt_resistancdloat | Must be between 100.0 and 100000. 0 - units [Ohms].

recombina- float | Required only if pv_model is plantpredict.enumerations.

tion_parameter PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 30.0

exponen- float | Must be between 1.0 and 100. O - unitless.

tial_dependency_on| shuni_resistance

bandgap_voltage float | Must be between 0.5 and 4.0 - units [V].

built_in_voltage float | Required only if pv_model is plantpredict.enumerations.
PVModelTypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 3.0 - units [V].

Generated Parameters

1.3. SDK Reference 31

plantpredict-python Documentation, Release 1.0.5

Table 8: Generated Parameters

Field Type | Description
maximum_series_resistance float | units [Ohms]
maximum_recombination_parameter float | units [V]
saturation_current_at_stc float | units [A]
diode_ideality_factor_at_stc float | unitless
linear_temp_dependence_on_gamma | float | units [%$/deg—C]
light_generated_current float | units [A]

Returns Dictionary mirroring local module object with newly generated parameters.

Return type dict

calculate_effective_irradiance_response (**kwargs)
POST /Module/Generator/CalculateEffectivelrradianceResponse

Calculates the relative efficiency for any number of irradiance conditions with respect to performance at
1000 W/m”2 for a given temperature. Detailed documentation on this calculation can be found here.
Unlike other of the plantpredict .Module methods related to generating module files, this method
only returns a dictionary, and does not also auto-assign any attributes to the local object.

Required Attributes

32

Chapter 1. Contents

https://plantpredict.com/algorithm/module-file-generator/#effective-irradiance-response-eir-calculation

plantpredict-python Documentation, Release 1.0.5

Table 9: Minimum required attributes

Field Type| Description

effec- list | Contains irradiance/temperature conditions at which to calculate rela-

tive_irradiance_respprge | tive efficiency. See example code below for usage.

dict

cell_technology_type int | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModelTypeEnum.

num- int Number of cells in one string of cells - unitless

ber of cells in_serigs

refer- float | Must be Dbetween 400.0 and 1361.0 - units [W/

ence_irradiance m"27. However, only the irradiance values provided in
:py:attr:‘effective_irradiance_response are used in this calcula-
tion.

refer- float | Must be between -20.0 and 80.0 - wunits [deg-C].

ence_temperature However, only the temperature values provided in
:py:attr:‘effective_irradiance_response are used in this calcula-
tion.

stc_max_power float | Must be between 0.0 and 1000 .0 - units [W].

stc_short_circuit_currdiotit | Must be between 0.1 and 100. 0 - units [A].
stc_open_circuit_volta@eat | Must be between 0.4 and 1000. 0 - units [V].
stc_mpp_current float | Must be between 0.1 and 100.0 - units [A].
stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].
stc_power_temp_coeffloat | Must be between —3.0 and 3.0 - units [%/deg-C].
stc_short_circuit_currdiohtteivuscbefbetween —0. 3 and 2. 0 - units [%/deg-C].
se- float | Must be between 0.0 and 100 .0 - units [Ohms]
ries_resistance_at_stc
shunt_resistance_at| $toat | Must be between 0.0 and 2100000. 0 - units [Ohms].
dark_shunt_resistancdloat | Must be between 100.0 and 100000. 0 - units [Ohms].

recombina- float | Required only if pv_model is plantpredict.enumerations.

tion_parameter PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 30.0

exponen- float | Must be between 1.0 and 100 . O - unitless.

tial_dependency_on| shunf_resistance

bandgap_voltage float | Must be between 0.5 and 4.0 - units [V].

built_in_voltage float | Required only if pv_model is plantpredict.enumerations.
PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 3.0 - units [V].

satura- float | Must be between 1e—13 and 1e—6 - units [A].

tion_current_at_stc
diode_ideality_facton_ fbastc Must be between 0.1 and 5. 0 - unitless.

lin- float | Must be between —3.0 and 3.0 - units [%/deg-C].
ear_temp_dependerice_on_gamma

light_generated_currefibat | Must be between 0.1 and 100. 0 - units [A]

Example Code

First, import the plantpredict library and create an instance of plantpredict.api.Api in your
Python session, to authenticate as shown in Step 3 of API Authentication. Then instantiate a lo-
cal plantpredict.module.Module object as shown in previous examples. Then, assuming

1.3. SDK Reference 33

plantpredict-python Documentation, Release 1.0.5

that all of the other required attributes have been assigned to the local object, assign the attribute
effective_irradiance_response as follows (this determines which conditions the relative ef-
ficiencies will be calculated at):

Important note: For each dictionary in :py:attr: ‘effective_irradiance_response‘, there is an optional
field (in addition to py:attr: ‘temperature‘ and py:attr: ‘irradiance’), :py:attr: ‘relative_efficiency‘. For
this method, that field does not have to be defined - it is used for :py:meth: ‘optimize_series_resistance*
to be used as a target for tuning the series resistance. The EIR calculated by this method will
be different from the target. In the context of creating a new module file, a user would probably
want to compare the model-calculated EIR (determined from this method), to the target relative effi-
ciencies in :py:attr: ‘effective_irradiance_response‘, which is why they have :py:attr: ‘temperature‘ and
:py:attr: ‘irradiance ‘ in common.

Call this method to generate the model-calculated effective irradiance response.

Which returns the following sample response (a relative efficiency of 0.99 represents 99% or -1% efficiency
relative to [W/m"2] at the same temperature):

Returns A list of dictionaries containing the calculated relative efficiencies (see Example Code
above).

Return type list of dict

optimize_series_resistance (**kwargs)

POST /Module/Generator/OptimizeSeriesResistance

While this method can be called independently, it is most commonly used after first calling
plantpredict.Module.generate_single_diode_parameters_advanced () or
plantpredict.Module.generate_single_diode_parameters_default (). Auto-
matically “tunes” series_resistance_at_stc to bring the model-calculated effective irradiance
(EIR) response close to a user-specified target EIR. Also recalculates single-diode parameters dependent
on series_resistance_at_stc. Detailed documentation on the algorithm used to accomplish this
can be found here. An example of using this method in practice can be found in Example Usage.

Required Attributes

34

Chapter 1. Contents

https://plantpredict.com/algorithm/module-file-generator/#optimize-series-resistance-to-match-eir-algorithm

plantpredict-python Documentation, Release 1.0.5

Table 10: Minimum required attributes

Field Type| Description

effec- list List of dictionaries each containing temperature, irradiance, and the tar-

tive_irradiance_respprge | get efficiency relative to STC at those conditions.

dict

cell_technology_type int | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModelTypeEnum.

num- int Number of cells in one string of cells - unitless

ber of cells in_serigs

refer- float | Must be between 400.0 and 1361.0 - units [W/m”~2]. While re-

ence_irradiance quired, this value isn’t used in the calculation.

refer- float | Must be between —20.0 and 80. 0 - units [deg—C]. While required,

ence_temperature this value isn’t used in the calculation.

stc_max_power float | Must be between 0.0 and 1000. 0 - units [W].

stc_short_circuit_currdioht | Must be between 0.1 and 100 .0 - units [A].
stc_open_circuit_voltafjeat | Must be between 0.4 and 1000. 0 - units [V].
stc_mpp_current float | Must be between 0.1 and 100.0 - units [A].
stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].
stc_power_temp_coeffloat | Must be between —3.0 and 3.0 - units [%$/deg—C].
stc_short_circuit_curréiohttevuscbefbetween —0.3 and 2. 0 - units [$/deg-C].
se- float | Must be between 0.0 and 100. 0 - units [Ohms]
ries_resistance_at_stc
shunt_resistance_at| dtoat | Must be between 0.0 and 100000. 0 - units [Ohms].
dark_shunt_resistancedloat | Must be between 100.0 and 100000. 0 - units [Ohms].

recombina- float | Required only if pv_model is plantpredict.enumerations.

tion_parameter PVModel TypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 30.0

exponen- float | Must be between 1.0 and 100. O - unitless.

tial_dependency_on| shunt_resistance

bandgap_voltage float | Must be between 0.5 and 4.0 - units [V].

built_in_voltage float | Required only if pv_model is plantpredict.enumerations.
PVModelTypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 3.0 - units [V].

satura- float | Must be between 1e—13 and 1e—6 - units [A].

tion_current_at_stc
diode_ideality_facton #bastc Must be between 0.1 and 5. 0 - unitless.

lin- float | Must be between —3.0 and 3.0 - units [%/deg-C].
ear_temp_dependerice_on_gamma

light_generated_currefibat | Must be between 0.1 and 100. 0 - units [A]

Returns Dictionary mirroring local module object with newly generated parameters.
Return type dict
process_key_iv_points (**kwargs)
POST /Module/Generator/ProcessKeylVPoints

Processes “Key IV Points” data, either from a file template or similar data structure. This is
used as a pre-processing step to module file generation - it returns the minimum required fields for

1.3. SDK Reference 35

plantpredict-python Documentation, Release 1.0.5

plantpredict.generate_single_diode_parameters_default (). It also automatically
assigns the resulting attributtes to the local object instance of plantpredict .Module. Detailed algo-
rithmic documentation for this method can be found here. See “Example Code” below for sample usage
and “Generated Parameters” for the resulting attributes assigned to the local object instance.

Example Code

If the user is using the Excel template, usage of this method is straightforward:

However, the user can also manually construct the data structure and call the method as follows:

(continues on next page)

36

Chapter 1. Contents

https://plantpredict.com/algorithm/module-file-generator/#processing-key-i-v-points

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

While the only required temperature/irradiance conditions is STC (25 deg-C / 1000 W/m”2), more in-
put data is required to generate temperature coefficients and effective irradiance response (see Generated
Parameters).

Generated Parameters

The following parameters are automatically assigned as attributes to the local instance of
plantpredict.Module.

Table 11: Generated Parameters

Field Type| Description

stc_short_circuit_currenfloat | Always returned with minimum required input (data at STC) - units

stc_open_circuit_voltagdoat 1[\L71_\v3/ays returned with minimum required input (data at STC) - units

stc_mpp_current float Elfvzlays returned with minimum required input (data at STC) - units

stc_mpp_voltage float g?viays returned with minimum required input (data at STC) - units

stc_max_power float z’[\\llviays returned with minimum required input (data at STC) - units
(W]

stc_short_circuit_currenfiotem@mipeéturned if data provided at 1000 W/m”2 and at least one tem-
perature other than 25 deg-C - units [$/deg-C]
stc_open_circuit_voltag@otemPnipedturned if data provided at 1000 W/m”2 and at least one tem-
perature other than 25 deg-C - units [$/deg—C]
stc_power_temp_coef| float| Only returned if data provided at 1000 W/m"2 and at least one tem-
perature other than 25 deg—C - units [%$/deg—C]

effec- dict | Only returned if data provided at multiple irradiances for a single tem-
tive_irradiance_response perature - see example output below for contents.

The following is an example of the dictionary output (mirrors “Generated Parameters”™).

1.3. SDK Reference 37

plantpredict-python Documentation, Release 1.0.5

Parameters
» file_path (str) - File path to the .xIsx template for Key IV Points (input option 1).

* key_iv_points_data (1ists of dict)- List of dictionaries containing module
electrical characteristics at STC and other temperature/irradiance conditions (input option
2).

Returns Dictionary containing STC electrical parameters, temperature coefficients, and effec-
tive irradiance response, depending on the scope of the input data provided (see “Generated
Parameters” above).

Return type dict

process_iv_curves (**kwargs)
POST /Module/Generator/ProcessIVCurves

Processes any number of full IV Curve measurements, either from a file template or similar data
structure. This is used as a pre-processing step to module file generation - it returns the extracted electrical
characteristics at the set of temperature/irradiance conditions corresponding to those of the provided IV
Curves. The output data structure matches the exact data input structure for plantpredict .Module.
process_key_iv_points (). (The methods are meant to be used in succession in order to effectively
extract electrical characteristics at STC, temperature coefficients, and effective irradiance response from a
set of IV curves). Detailed algorithmic documentation for this method can be found here. See “Example
Code” below for sample usage.

Example Code

If the user is using the Excel template, usage of this method is straightforward:

However, the user can also manually construct the data structure and call the method as follows:

(continues on next page)

38 Chapter 1. Contents

https://plantpredict.com/algorithm/module-file-generator/#processing-full-i-v-curves

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Which will return a data structure:

Reminder: While only one IV curve is provided in the example, multiply IV curves can be supplied.

Parameters

» file path (str) — File path to the .xlsx template for Full IV Curves. (At least 40
points are required for each IV curve.)

* iv_curve_data (list dict)-Listof dictionaries, each representing an IV curve at
a particular temperature/irradiance. (At least 40 points are required for each IV curve.)

Returns List of dictionaries, each containing extracted module electrical characteristics corre-
sponding to the IV curve provided at a particular temperature/irradiance condition.

Return type list of dict

generate_iv_curve (**kwargs)
POST /Module/Generator/GenerateIVCurve

Generates an IV curve given An example of using this method in practice can be found in Example Usage.

Required Attributes

1.3. SDK Reference 39

plantpredict-python Documentation, Release 1.0.5

Table 12: Minimum required attributes

Field Type| Description

cell_technology_type int | Represents the cell technology type (CdTe, poly c-Si
PERC, etc). Use plantpredict.enumerations.
CellTechnologyTypeEnum.

pv_model int | Represents the 1-diode model type (1-Diode, 1-Diode with
recombination). Use plantpredict.enumerations.
PVModelTypeEnum.

num- int | Number of cells in one string of cells - unitless

ber of cells_in_serigs

refer- float | Must be between 400.0 and 1361 .0 - units [W/m"2]. The IV curve

ence_irradiance will represent this irradiance.

refer- float | Must be between —20.0 and 80.0 - units [deg—C]. The IV curve

ence_temperature will represent this temperature.

stc_max_power float | Must be between 0.0 and 1000. 0 - units [W].

stc_short_circuit_currdhfat | Must be between 0.1 and 100. 0 - units [A].
stc_open_circuit_voltafjeat | Must be between 0.4 and 1000. 0 - units [V].
stc_mpp_current float | Must be between 0.1 and 100. 0 - units [A].
stc_mpp_voltage float | Must be between 0.4 and 1000.0 - units [V].
stc_power_temp_coeffloat | Must be between —3.0 and 3.0 - units [%/deg-C].
stc_short_circuit_curréhhatteMmscbebetween —0. 3 and 2. 0 - units [$/deg-C].
se- float | Must be between 0.0 and 100 .0 - units [Ohms]
ries_resistance_at_stc
shunt_resistance_at| dtoat | Must be between 0.0 and 100000 . O - units [Ohms].
dark_shunt_resistancdloat | Must be between 100.0 and 2100000. 0 - units [Ohms].

recombina- float | Required only if pv_model is plantpredict.enumerations.

tion_parameter PVModelTypeEnum.ONE_DIODE_RECOMBINATION. Must be
between 0.0 and 30.0

exponen- float | Must be between 1.0 and 100 . O - unitless.

tial_dependency_on| shunt_resistance

bandgap_voltage float | Must be between 0.5 and 4.0 - units [V].

built_in_voltage float | Required only if pv_model is plantpredict.enumerations.
PVModelTypeEnum.ONE_DIODE RECOMBINATION. Must be
between 0.0 and 3.0 - units [V].

satura- float | Must be between 1e—13 and 1e—6 - units [A].

tion_current_at_stc
diode_ideality_factor_8bastic Must be between 0.1 and 5. 0 - unitless.

lin- float | Must be between —3.0 and 3.0 - units [%/deg—-C].
ear_temp_dependerice_on_gamma

light_generated_currefibat | Must be between 0.1 and 100. 0 - units [A]

Example Output

Parameters num_iv_points (int)— Number of IV points to generate (defaults to 100).

Returns List of IV generated IV points (See “Example Output™)

40 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Return type list

calculate_basic_data_at_conditions (**kwargs)

Returns

Inverter
class plantpredict.inverter.Inverter (api, **kwargs)
Bases: plantpredict.plant_predict_entity.PlantPredictEntity

create ()
POST /Inverter

delete ()
DELETE /Inverter/{Id}

get ()
GET /Inverter/{1d}

update ()
PUT /Inverter

upload_ond_file (**kwargs)
creates a new inverter from a source .ond file

parse_ond_file (**kwargs)
creates a new inverter from a source .ond file

create_from_json (**kwargs)
creates a new inverter from a source JSON file

change_status (**kwargs)
Parameters
* new_status -
* note -
Returns

get_kva (**kwargs)
Uses the given elevation and temperature to interpolate a kVa rating from the inverter’s kVa curves.

Parameters

* elevation (float) — Elevation at which to evaluate the inverter kVa rating - units
[m].

* temperature (float) — Temperature at which to evaluate the inverter kVa rating -
units [deg-C].

* use_cooling_temp (bool) — Determines if the calculation should use the plant de-
sign cooling temperature (at 99.6 degrees).

Returns # TODO after new API response is implemented
get_inverter_ list (**kwargs)

Returns a list of all inverter to which a user has access.

1.3. SDK Reference 41

plantpredict-python Documentation, Release 1.0.5

Geo

class plantpredict.geo.Geo (api, latitude=None, longitude=None)
Bases: object

The Geo entity is used to get location-related information for a given latitude/longitude. Its methods can be
used individually, but typically location related info is needed in the context of a PlantPredict Pro ject entity.
In this case the user can simply call the method Project.get_location_info () which calls all Geo
class methods and automatically assigns all location-related attributes to that instance of Project. Note: This
API resource does not represent a database entity in PlantPredict. This is a simplified connection to the Google
Maps API. See Google Maps API Reference for further functionality. (https://developers.google.com/maps/)

get_location_info (**kwargs)
GET /Geo/ 1atitude/ longitude /Location

Retrieves pertinent location info for a given latitude and longitude such as locality, state/province, country,
etc. In addition to returning a dictionary with this information, the method also automatically assigns the
contents of the dictionary to the instance of Geo as attributes.

Required Attributes

Table 13: Minimum required attributes on object to call this method suc-
cessfully.
Field Type | Description
latitude | float | North-South GPS coordinate. Must be between —90 and 90 - units [decimal

degrees].
longi- float | East-West GPS coordinate Must be between —180 and 180 units [decimal
tude degrees].

Example Code

Instantiate a local object instance of Geo with latitude and longitude as inputs (which automatically assigns
them as attributes to the object). Then call the method on the object.

Example Response

The method returns a dictionary as shown in the example below, and assigns its contents as attributes to
the local object instance of Geo.

Returns A dictionary with location information as shown in “Example Response”.

Return type dict

get_elevation (**kwargs)
GET /Geo/ 1atitude / longitude /Elevation

42 Chapter 1. Contents

https://developers.google.com/maps/

plantpredict-python Documentation, Release 1.0.5

Retrieves the elevation in meters for a given latitude and longitude. In addition to returning a dictionary
with this information, the method also automatically assigns the contents of the dictionary to the instance
of Geo as attributes.

Required Attributes

Table 14: Minimum required attributes on object to call this method suc-
cessfully.

Field Type | Description
latitude | float | North-South GPS coordinate. Must be between —90 and 90 - units [decimal

degrees].
longi- float | East-West GPS coordinate Must be between —180 and 180 units [decimal
tude degrees].

Example Code

Instantiate a local object instance of Geo with latitude and longitude as inputs (which automatically assigns
them as attributes to the object). Then call the method on the object.

Example Response

The method returns a dictionary as shown in the example below, and assigns its contents as attributes to
the local object instance of Geo.

Returns A dictionary with location information as shown in “Example Response”.

Return type dict

get_time_zone (**kwargs)
GET /Geo/ latitude / longitude /TimeZone

Retrieves the time zone as a time shift in hours with respect to GMT for a given latitude and longitude. In
addition to returning a dictionary with this information, the method also automatically assigns the contents
of the dictionary to the instance of Geo as attributes.

Required Attributes

Table 15: Minimum required attributes on object to call this method suc-
cessfully.

Field Type | Description
latitude | float | North-South GPS coordinate. Must be between —90 and 90 - units [decimal

degrees].
longi- float | East-West GPS coordinate Must be between —180 and 180 units [decimal
tude degrees].

Example Code

Instantiate a local object instance of Geo with latitude and longitude as inputs (which automatically assigns
them as attributes to the object). Then call the method on the object.

1.3. SDK Reference 43

plantpredict-python Documentation, Release 1.0.5

Example Response

The method returns a dictionary as shown in the example below, and assigns its contents as attributes to
the local object instance of Geo.

Returns A dictionary with location information as shown in “Example Response”.

Return type dict

ASHRAE

class plantpredict.ashrae.ASHRAE (api, latitude=None, longitude=None, station_name=None)
Bases: object

The ASHRAE class is used to get key information for an ASHRAE station. It can be used on its own for
any application, but mostly exists to find and assign plant design temperatures for a particular location to a
Prediction.

get_station (**kwargs)
Returns the ASHRAE station matching the specified name and shortest distance from the specified latitude
and longitude. Sets the returned information as attributes on the instance of this class.

Parameters station_name (str) - Valid name of ASHRAE weather station
Returns # TODO once new http response is implemented

get_closest_station (**kwargs)
Returns the ASHRAE station with the shortest distance from the specified latitude and longitude. Sets the
returned information as attributes on the instance of this class.

Returns # TODO once new http response is implemented

1.3.2 Helpers

plantpredict.helpers.load_from_excel (file_path, sheet_name=None)
Loads the data from an Excel file into a list of dictionaries, where each dictionary represents a row in the Excel
file and the keys of each dictionary represent each column header in the Excel file. The method creates this list
of dictionaries via a Pandas dataframe.

Parameters
* file path (str) - The full file path (appended with .xIsx) of the Excel file to be loaded.

* sheet_name — Name of a particular sheet in the file to load (optional, defaults to the first
sheet in the

Excel file). :type sheet_name: str :return: List of dictionaries, each dictionary representing a row in the Excel
file. :rtype: list of dict

44 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

plantpredict.helpers.export_to_excel (data, file_path, sheet_name="Sheetl’,

field_order=None, sorting_fields=None)
Writes data from a list of dictionaries to an Excel file, where each dictionary represents a row in the Excel file

and the keys of each dictionary represent each column header in the Excel file.
Parameters

* data (list of dict) — List of dictionaries, each dictionary representing a row in the
Excel file.

* file path — The full file path (appended with .xIsx) of the Excel file to be written to.
This will overwrite

data if both file_path and sheet_name already exist. :type file_path: str :param sheet_name: Name of a particular
sheet in the file to write to (optional, defaults to “Sheet1”). :type sheet_name: str :param field_order: List of keys
from data ordered to match the intended Excel column ordering (left to right). Must include all keys/columns.
Any keys omitted from the list will not be written as columns. (optional) :type field_order: list of str :param
sorting_fields: List of keys from data to be used as sorting columns (small to large) in Excel. Can be any length
from 1 column to every column. The order of the list will dictate the sorting order. :type sorting_fields: list of
str :return: None

1.3.3 Data Enumerations

class plantpredict.enumerations.AirMassModelTypeEnum

Air Mass Model
BIRD HULSTROM = 0
KASTEN SANDIA =1

class plantpredict.enumerations.BacktrackingTypeEnum
Backtracking Type

TRUE_TRACKING = 0
BACKTRACKING = 1

class plantpredict.enumerations.CellTechnologyTypeEnum
Cell Technology

NTYPE_MONO_CSI = 1
PTYPE_MONO_CSI_PERC = 2
PTYPE_MONO_CSI_BSF = 3
POLY_CSI_PERC = 4

POLY CSI_BSF = 5

6

CIGS = 7

CDTE

class plantpredict.enumerations.CleaningFrequencyEnum
Cleaning Frequency

NONE = 0
DAILY =1
MONTHLY = 2

QUARTERLY = 3

1.3. SDK Reference 45

plantpredict-python Documentation, Release 1.0.5

YEARLY = 4

class plantpredict.enumerations.ConstructionTypeEnum

Construction Type
GLASS_GLASS =1
GLASS_BACKSHEET = 2

class plantpredict.enumerations.DataSourceEnum

Data Source

MANUFACTURER = 1

PVSYST = 2
UNIVERSITY_OF_ GENEVA = 3
PHOTON = 4

SANDIA DATABASE = 5

CUSTOM = 6

class plantpredict.enumerations.DegradationModelEnum

Degradation Model
NONE = 0
STEPPED_AC = 1
LINEAR AC = 2
LINEAR DC = 3
NON_LINEAR DC = 4

class plantpredict.enumerations.DiffuseDirectDecompositionModelEnum

Diffuse Direct Decomposition Model
ERBS = 0
REINDL

I
[y

DIRINT

I
N

NONE = 3

class plantpredict.enumerations.DiffuseShadingModelEnum

Diffuse Shading Model
NONE = 0

SCHAAR PANCHULIA = 1

class plantpredict.enumerations.DirectBeamShadingModelEnum

Direct Beam Shading Model
LINEAR = 0

NONE = 1

TWO_DIMENSION = 2
FRACTIONAL_EFFECT = 3
CSI_3_DIODE = 4
MODULE_FILE_DEFINED = 5

46

Chapter 1

. Contents

plantpredict-python Documentation, Release 1.0.5

class plantpredict.enumerations.EntityTypeEnum
Entity Type

PROJECT =1
MODULE = 2
INVERTER = 3
WEATHER = 4
PREDICTION = 5

class plantpredict.enumerations.ESSChargeAlgorithmEnum
Energy Storage System (ESS) Charge Algorithm

LGIA_EXCESS = 0
ENERGY_ AVAILABLE = 1
CUSTOM = 2

class plantpredict.enumerations.ESSDispatchCustomCommandEnum
Energy Storage System (ESS) Dispatch Custom Command

NONE = 0
DISCHARGE = 1
CHARGE = 2

class plantpredict.enumerations.FacialityEnum
Faciality

MONOFACIAL = 0
BIFACIAL =1

class plantpredict.enumerations.IncidenceAngleModelTypeEnum
Incidence Angle Model Type

SANDIA = 2
ASHRAE = 3
NONE = 4

TABULAR IAM = 5
PHYSICAL = 6

class plantpredict.enumerations.LibraryStatusEnum
Library Status (for Module, Inverter, Weather)

UNKNOWN = 0
DRAFT PRIVATE = 1
DRAFT_ SHARED = 2
ACTIVE = 3
RETIRED = 4
GLOBAL = 5

GLOBAL_RETIRED = 6

1.3. SDK Reference

47

plantpredict-python Documentation, Release 1.0.5

class plantpredict.enumerations.ModuleDegradationModelEnum
Module Degradation Model

UNSPECIFIED = 0
LINEAR = 1
NONLINEAR = 2

class plantpredict.enumerations.ModuleOrientationEnum
Module Orientation

LANDSCAPE = 0
PORTRAIT = 1

class plantpredict.enumerations.ModuleShadingResponseEnum
Module Shading Response

NONE = 0

LINEAR =1
FRACTIONAL_EFFECT = 2
CSI_3_DIODE = 3
CUSTOM = 4

class plantpredict.enumerations.ModuleTemperatureModelEnum
Module Temperature Model

HEAT_ BALANCE = 0
SANDIA =1
NOCT = 2

class plantpredict.enumerations.ModuleTypeEnum
Module Type

SINGLE_DIODE = 0
ADVANCED_DIODE = 1

class plantpredict.enumerations.PerezModelCoefficientsEnum
Perez Coefficients

PLANT_PREDICT = 0

1]
=

ALL_SITES_COMPOSITE_1990

]
N

ALL SITES_COMPOSITE_1988
SANDIA COMPOSITE_1988 = 3
USA_COMPOSITE_1988 = 4

FRANCE_ 1988 = 5

PHOENIX 1988 6

ELMONTE_1988 7

OSAGE_1988 = 8
ALBUQUERQUE_1988 = 9
CAPE_CANAVERAL 1988 = 10

48

Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

ALBANY_ 1988 = 11

class plantpredict.enumerations.PredictionStatusEnum
Prediction Status

DRAFT_PRIVATE = 1
DRAFT_SHARED = 2
ANALYSIS = 3

BID = 4

CONTRACT = 5

DEVELOPMENT = 6

AS_BUILT = 7
WARRANTY = 8
ARCHIVED = 9

class plantpredict.enumerations.PredictionVersionEnum
Prediction Version

VERSION_3 =
VERSION_4 =
VERSION_5 =
VERSION_6 =
VERSION_7 =

VERSION_8 =

W 00 Jd o U W

VERSION_9 =
VERSION_10 = 10
VERSION_11 = 11

class plantpredict.enumerations.ProcessingStatusEnum
Processing Status

NONE = 0
QUEUED = 1
RUNNING = 2
SUCCESS = 3
ERROR = 4

class plantpredict.enumerations.ProjectStatusEnum
Project Status

ACTIVE = 0
ARCHIVED = 1

class plantpredict.enumerations.PVModelTypeEnum
PV Model

ONE_DIODE_RECOMBINATION = 0
ONE_DIODE = 1

1.3. SDK Reference 49

plantpredict-python Documentation, Release 1.0.5

ONE_DIODE_RECOMBINATION_NONLINEAR

class plantpredict.enumerations
Soiling Model

CONSTANT MONTHLY 0

1

WEATHER_FILE

NONE 2

class plantpredict.enumerations
Spectral Shift Model

NO_SPECTRAL_SHIFT 0

ONE_PARAM PWAT_ OR_SANDIA

TWO_PARAM PWAT AND_ AM 2

3

MONTHLY_ OVERRIDE

class plantpredict.enumerations
Spectral Weather Type

0

NONE

NGAN_PWAT 1

NGAN_RH 2

NGAN_DEWPOINT 3

class plantpredict.enumerations
Tracking Type

FIXED TILT 0

HORIZONTAL_TRACKER 1

2

SEASONAL_TILT

class plantpredict.enumerations
Transposition Model

0

HAY

PEREZ 1

class plantpredict.enumerations
Circumsolar Allocation Type

0
1

DIFFUSE

DIRECT

class plantpredict.enumerations
Weather Data Provider

NREL 1

AWS 2

WIND_LOGICS 3

METEONORM 4

THREE_TIER 5

3

.SoilingModelTypeEnum

.SpectralShiftModelEnum

1

.SpectralWeatherTypeEnum

.TrackingTypeEnum

.TranspositionModelEnum

.CircumsolarTreatmentTypeEnum

.WeatherDataProviderEnum

50

Chapter 1

. Contents

plantpredict-python Documentation, Release 1.0.5

CLEAN_POWER_ RESEARCH = 6
GEO_MODEL_SOLAR = 7
GEO_SUN_AFRICA = 8

SODA = 9

HELIO_CLIM = 10
SOLAR_RESOURCE_ASSESSMENT = 11
ENERGY_PLUS = 12

OTHER = 13

CUSTOMER = 14
SOLAR_PROSPECTOR = 15
GLOBAL_FED = 16

NSRDB = 17

WHITE_BOX_ TECHNOLOGIES = 18
SOLARGIS = 19

NASA = 20
THREE_TIER_VAISALA = 21
SOLCAST = 22

class plantpredict.enumerations.WeatherDataTypeEnum
Weather Data Type

SYNTHETIC_MONTHLY = 0
SATELLITE = 1
GROUND_CORRECTED = 2
MEASURED = 3

TMY3 = 4

TGY = 5

T™™Y = 6

PSM = 7

SUNY = 8

MTS2 = 9

Cz2010 = 10

class plantpredict.enumerations.WeatherFileColumnTypeEnum
Weather File Column Type

GHI =1
DNI = 2
DHI = 3
TEMP = 4

WINDSPEED = 5

1.3. SDK Reference 51

plantpredict-python Documentation, Release 1.0.5

RELATIVE_HUMIDITY = 6

PWAT 7

RAIN = 8

PRESSURE = 9
DEWPOINT_TEMP = 10
WIND_DIRECTION = 11
SOILING_LOSS = 12
POAI = 13
REAR_POAI = 14

class plantpredict.enumerations.WeatherPLevelEnum
Weather P-Level

P50 = 0
P90 =1
P95 = 3
P99 = 4
NA = 2

P75 = 5

class plantpredict.enumerations.WeatherSourceTypeAPIEnum
Weather Source Type API (web-service downloadable vendors). This Enum is used when -calling
download().

UNKNOWN = 0

METEONORM = 1
CPR_SOLAR_ANYWHERE = 2
NSRDB_PSM = 3

NSRDB_ SUNY 4

]
(6]

NSRDB_MTS2
SOLAR GIS = 6
NASA = 7

class plantpredict.enumerations.WeatherTimeResolution
Weather Time Resolution

UNKNOWN = 0
HALF_HOUR =1
HOUR = 2
MINUTE = 3

52 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

1.4 Example Usage

The code snippets below are practical examples of useful tasks accomplished via PlantPredict’s API. All of the code
used in the examples below is available via the source code on Github. Feel free to use and modify the code in your
local environment.

Every example assumes that you first import plantpredict and authenticate with Api as shown in Step 3 of
API Authentication.

1.4.1 Create Project and Prediction from scratch.

This is one example of how to build a project, prediction, and attach a power plant. There are a variety of optional set-
tings for every component that can’t be captured in a single example. Please refer to the documentation for Pro ject,
Prediction, and PowerPlant for more information.

Instantiate a local instance of Pro ject, assigning name, latitude, and longitude.

Assign location attributes with helper method assign_location_attributes (), and create as the local in-
stance of Pro ject a new entity in the PlantPredict database.

Instantiate a local instance of Prediction, assigning project_1id (from the newly created project) and name.

| - - _ -

Assign the weather_id corresponding to the weather file you want to use (assuming it already exists in the Plant-
Predict database).

| . -

Instantiate and retrieve the weather file, and ensure that the two pairs of prediction start/end attributes match those of
the weather file.

Import all of the enumeration files relevant to prediction settings. Set ALL of the following model options on the
prediction using the enumerations library in enumerations similar to the code below, but to your preferences.

from import
o \

(continues on next page)

1.4. Example Usage 53

https://github.com/plantpredict/python-sdk/tree/main/example_usage

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Create the prediction in the PlantPredict database.

Change the prediction’s status to plantpredict.enumerations.PredictionStatusEnum.
DRAFT-SHARED to make it accessible to other members of your team (or to another relevant status).

Instantiate a local instance of PowerPlant, assigning its project_id and prediction_id.

Add a fixed tilt block, array, inverter, and dc field using add_block (), add_array (), add_inverter () and
add_dc_field(), respectively. In this example, not all optional fields are used in this method. Refer to each
method’s documentation for information on what other power plant attributes can be configured. Additionally, refer to
the PlantPredict User Guide for documentation on power plant hierarchy.

(continues on next page)

54 Chapter 1. Contents

https://plantpredict.com/user_manual/predictions/#power-plant-builder

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Assuming there is one DC field on the inverter, the field DC power can be calculated from a DC AC ratio. If there were
two identical DC fields on a single inverter, you would use half of the number of strings. For irregular configurations,
perform a custom calculation for number of strings in parallel and field dc power. Additionally, the post to post spacing
can be calculated from GCR and some information about the module being used in the DC field. Use the helpers to
prepare field DC power and post to post spacing, and then add the fixed tilt DC field.

You can continue to add new blocks, or even add arrays to blocks, inverters to arrays, etc. The code below is an
example of adding a block with a DC field that uses single-axis tracking.

Prepare the field DC power and post to post spacing for the tracker DC field, and then add it to the inverter.

(continues on next page)

1.4. Example Usage 55

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Create the local instance of PowerPlant as a new entity in the PlantPredict database. Since the id’s of the project
and prediction created previously were assigned to the PowerPlant, it will automatically attach to the prediction in
PlantPredict.

The prediction can now be run.

|

1.4.2 Model System-Level of Power Plant (Transformer, Transmission, etc.)

This tutorial details how to model Total System Capacity, Transformers and Transmission Lines for a power
plant/energy prediction. This can be done upon initial creation of a prediction from scratch (see the example for
Create Project and Prediction from scratch.), but for the sake of example, we will consider the case of updating an
existing power plant.

Instantiate a PowerPlant, specifying its project_id and prediction_id (visible in the URL of that predic-
tion in a web browser ... /projects/{project_id}/prediction/{id}).

= # CHANGE TO YOUR PROJECT IL
= # CHANGE TO YOUR PREDICTION IT

Retrieve the power plant’s attributes.

Set the system availability_loss onthe PowerPIlant instance in units [$].

| . -

Set the plant output (LGIA) limit in units [MWac].

| . -

56 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Add transformers and transmission_lines, specifying the ordinal (1-indexed) such that they are in the
desired order (where 1 is closest to the physical output of the plant).

Call the update () method on the instance of PowerPlant to persist these changes to PlantPredict.

1.4.3 Download nodal data.

First, set up a dictionary containing the nodal data export options. Set the values to True according to
which nodes in the PowerPlant hierarchy you are interested in exporting nodal data. For each block in
block_export_options, specify the block number (using the field name). You can add export options for
multiple blocks, but in this example we just do one.

Instantiate a new prediction using the Prediction class, specifying its 1d and project_id (visible in the URL
of that prediction in a web browser ... /projects/{project_id}/prediction/{id}/).

Run the prediction.

Retrieve the nodal data of Array 1 (in Block 1) and DC Field 1 (in Block 1 —> Array 1 —> Inverter A). Note that the
lowest node (power plant hierarchy-wise) in the input dictionary specifies the nodal data returned.

1.4. Example Usage 57

plantpredict-python Documentation, Release 1.0.5

For system-level nodal data, call the method with no inputs.

The nodal data returned will be returned as JSON serializable data, as detailed in the documentation for
get_nodal_data().

1.4.4 Download Specific Nodal Data Outputs.

The get_nodal_data () also supports an optional parameter for the requested output fields. For example, the
DCField nodal data request from above can be modified to only return a subset of the available fields. The example
below will result in only the specified output values being returned from the PlantPredict API. This can be very useful
when dealing with large datasets or filtering out erroneous outputs. For a complete list of available parameters, visit
our API documentation.

1.4.5 Get Prediction Result Summary.

Instantiate the prediction you wish to retrieve results for by using the Prediction class, specifying its id and
project_id (visible in the URL of that prediction in a web browser ... /projects/{project_id}/
prediction/ {id}/).

When retrieving the results, you can provide a parameter to the get_results_summary () function of
negate_losses=True if you wish to see the corrected loss factors values (which are shown in the PlantPredictUT).
If you wish to get the raw, un-corrected loss data, either omit this parameter or specify a value of False.

1.4.6 Clone a prediction.

Instantiate the prediction you wish to clone using the Prediction class, specifying its id and project_id
(visible in the URL of that prediction in a web browser ... /projects/{project_id}/prediction/{id}/

).

ON ID

Clone the prediction, passing in a name for the new prediction. This will create a new prediction within the same
project that is an exact copy (other than the name) of the original prediction.

58 Chapter 1. Contents

https://documenter.getpostman.com/view/3855302/UVsHUoHa#f580d39f-980d-4017-8476-63d9f1f1c88a
https://documenter.getpostman.com/view/3855302/UVsHUoHa#f580d39f-980d-4017-8476-63d9f1f1c88a

plantpredict-python Documentation, Release 1.0.5

If you wish to change something about the new prediction, instantiate a new Predict ion with the returned predic-
tion ID, change an attribute, and call the update () method.

from import

1.4.7 Change the module in a power plant.

Instantiate the powerplant of the prediction of interest using the PowerPlant class, specifying the project_id
and prediction_id (visible in the URL of that prediction in a web browser ... /projects/{project_id}/
prediction/{id}/).

Retrieve all of its attributes.

Specify the id of the module you want to replace the power plant’s current module with (visible in the URL of that
module in a web browser ... /module/ {id} /). Retrieve the module.

In order to change the module in Block 1 — Array 1 —> Inverter A —> DC Field 1, replace the previous module’s data
structure, replace the module id, and update the power plant with the the update () method.

Change various power plant properties

The SDK supports direct JSON modifcation with the power plant entity as an alternative way to adjust your power
plant configuration. Below is an example of a very simple way to get a power plant configuration, modify the desired
fields, and save those changes.

(continues on next page)

1.4. Example Usage 59

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

[

1.4.8 Change a prediction’s weather file.

Instantiate the prediction of interest using the Prediction class, specifying its id and project_id (visible in
the URL of that prediction in a web browser ... /projects/{project_id}/prediction/{id}/). Do the
same for the project of interest using the Pro ject class.

Retrieve the project and prediction’s attributes.

In this particular case, let’s say you are looking for the most recent Meteonorm weather file within a 5-mile radius of the
project site. Search for all weather files within a 5 mile radius of the project’s lat itude/longitude coordinates.

Filter the results by only Meteonorm weather files.

from import

—

If there is a weather file that meets the criteria, used the most recently created weather file’s 1d. If no weather file
meets the criteria, download a new Meteonorm (or whatever type you are working with) weather file and use that id.

from import

Instantiate weather using the weather id and retrieve all of its attributes.

60 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

Change the weather_id of the prediction and update the prediction.

1.4.9 Change the status of a prediction, weather, module, inverter object.

In order to change the status of a weather, module or inverter object, one must call a separate “update_status” endpoint.
For example:

from import

1.4.10 Upload raw weather data.

Whether you are starting with an Excel file, CSV file, SQL query, or other data format, the first step is to get your data
into a JSON-like format. That format is represented in Python as a list of dictionaries, where each dictionary represents
a timestamp of weather data. Depending on the initial data format, you can utilize any of Python’s open-source data
tools such as the native csv library or pandas. This tutorial skips that step and loads pre-processed data from this
JSON file.

import

Using the known latitude and longitude of the weather data location, call get_location _info () query crucial
location info necessary to populate the weather file’s metadata.

Initialize the Weather entity and populate with the minimum fields required by create (). Note that the weather
details time series data loaded in the first step is assigned to weather_details at this point.

from import

(continues on next page)

1.4. Example Usage 61

https://docs.python.org/2/library/csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Assign additional metadata fields.

in

Create the weather file in PlantPredict with create ().

1.4.11 Generate a module file.

Instantiate a Modu le object.

Assign basic module parameters from the manufacturer’s datasheet or similar data source.

from import

(continues on next page)

62 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Generate single diode parameters using the default algorithm/assumptions.

At this point, the user could simply add the remaining required fields and save the new module. Alternatively, the user
can tune the module’s single diode parameters to achieve (close to) a desired effective irradiance response (EIR)/low-
light performance. The first step is to define target relative efficiencies at specified irradiance.

How a user chooses to tune the module’s performance is relatively open-ended, but a good place to start is using
PlantPredict’s Optimize Series Resistance” algorithm. This will automatically change the series resistance to generate
an EIR closer to the target, and re-calculate all single-diode parameters dependent on series resistance.

At any point the user can check the current model-calculated EIR to compare it to the target.

An IV curve can be generated for the module for reference.

The initial series resistance optimization might not achieve an EIR close enough to the tar-

get. the user can modify any parameter, re-optimize series resistance or just recalculate depen-
dent parameters, and check EIR repeatedly. This is the open-ended portion of module file gen-
eration. Important Note: after modifying parameters, if the user does not re-optimize series re-

sistance, generate_single_diode parameters_advanced () must be called to re-calculate
saturation_current_at_stc,diode_ideality_factor_at_stc, light_generated_current,
linear_temperature_dependence_on_gamma, maximum_series_resistance and
maximum_recombination_parameter (if applicable).

Once the user is satisfied with the module parameters and performance, assign other required fields.

from import

(continues on next page)

1.4. Example Usage 63

https://plantpredict.com/algorithm/module-file-generator/
https://plantpredict.com/algorithm/module-file-generator/#optimize-series-resistance-to-match-eir-algorithm

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

Create a new Module in the PlantPredict database.

1.4.12 Set a prediction’s monthly factors (albedo, soiling loss, spectral loss).

Monthly albedo, soiling loss [%], and spectral loss [%] can all be set for a prediction with the attribute
monthly_factors (a py:data:dict). This can be done upon initial creation of a prediction from scratch (see the
example for Create Project and Prediction from scratch.), but for the sake of example, we will consider the case of
updating an existing prediction.

First instantiate the prediction of interest using the Prediction class, specifying its 1d and project_id (visible
in the URL of that prediction in a web browser ... /projects/{project_id}/prediction/{id}/).

= # CHANGE TO YOUR PROJECT 1ID
= # CHANGE TO YOUR PREDICTION ID

Retrieve the prediction’s attributes.

This example assumes that the user wants to specify all 3 available monthly_factors, and enforce that the pre-
diction use monthly soiling loss and spectral loss averages. (Alternatively, a user can choose to only specify albedo,
or albedo and soiling loss, or albedo and spectral shift.)

Set the monthly_factors as such, where albedo is in units [decimal], soiling loss in [%], and spectral loss
in [%]. (Note: for soiling loss and spectral loss, a negative number indicates a gain.) The values below should be
replaced with those obtained from measurements or otherwise relevant to the project being modeled.

(continues on next page)

64 Chapter 1. Contents

plantpredict-python Documentation, Release 1.0.5

(continued from previous page)

In order to enforce that the prediction use monthly average values (rather than soiling time series from a weather file,
for instance), the attributes soiling_model and spectral_shift_model must be set with the following code
(assuming that both soiling loss and spectral shift loss have been specified in monthly factors).

Call the update () method on the instance of Predict ion to persist these changes to PlantPredict.

1.4.13 Upload a module .PAN file.

The PlantPredict API has two related endpoints, the first which will parse the contents of the provided .PAN file and
return a PlantPredict compatible JSON object. The second, which is the POST /Module endpoint where the module
JSON can be sent in order to create the module within PlantPredict.

Option 1: One-Step Parse & Upload This approach only requires one function call and will request, process, and
upload the parsed contents.

Option 2: Two-Step Parse, Edit, & Upload This approach gives you the opportunity to view and modify the parsed
contents prior to adding the module to PlantPredict

1.4.14 Upload an inverter .OND file.

The PlantPredict API has two related endpoints, the first which will parse the contents of the provided .OND file and
return a PlantPredict compatible JSON inverter. The second, which is the POST /Inverter endpoint where the
inverter JSON can be sent in order to create the inverter within PlantPredict.

Option 1: One-Step Parse & Upload This approach only requires one function call and will request, process, and
upload the parsed contents.

1.4. Example Usage 65

plantpredict-python Documentation, Release 1.0.5

Option 2: Two-Step Parse, Edit, & Upload This approach gives you the opportunity to view and modify the parsed
contents prior to adding the module to PlantPredict

1.5 Release Notes

Please refer to the package’s GitHub Releases page for detailed release notes.

66 Chapter 1. Contents

https://github.com/plantpredict/python-sdk/releases

CHAPTER 2

Indices and tables

* genindex

¢ search

67

plantpredict-python Documentation, Release 1.0.5

68 Chapter 2. Indices and tables

Python Module Index

P

plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.
plantpredict.

api, 7
ashrae, 44
enumerations, 45
geo, 42
helpers, 44
inverter, 41
module, 25
powerplant, 11
prediction,9
project, 7
weather, 22

69

plantpredict-python Documentation, Release 1.0.5

70 Python Module Index

Index

A

ACTIVE (plantpredict.enumerations.LibraryStatusEnum
attribute), 47

ACTIVE (plantpredict.enumerations.ProjectStatusEnum
attribute), 49

add_array () (plantpredict.powerplant.PowerPlant
method), 17

add_block () (plantpredict.powerplant.PowerPlant
method), 16

add_dc_field() (plantpre-
dict.powerplant. PowerPlant method), 19

add_inverter () (plantpre-
dict.powerplant. PowerPlant method), 18

add_transformer () (plantpre-
dict.powerplant. PowerPlant method), 15

add_transmission_line () (plantpre-
dict.powerplant. PowerPlant method), 16

ADVANCED_DIODE (plantpre-
dict.enumerations.ModuleTypeEnum attribute),

48

AirMassModelTypeEnum (class in plantpre-
dict.enumerations), 45
ALBANY_1988 (plantpre-

dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

ATLBUQUERQUE_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

ALL_SITES_COMPOSITE_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

ALL_SITES_COMPOSITE_1990 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

ANALYSTIS (plantpredict.enumerations.PredictionStatusEnum

attribute), 49
Ap1i (class in plantpredict.api), 7

ARCHIVED (plantpredict.enumerations. ProjectStatusEnum
attribute), 49

AS_BUILT (plantpredict.enumerations. PredictionStatusEnum
attribute), 49

ASHRAE (class in plantpredict.ashrae), 44

ASHRAE (plantpredict.enumerations.IncidenceAngleModelType Enum

attribute), 47
ashrae () (plantpredict.api.Api method), 7
assign_location_attributes()
dict.project. Project method), 9
AWS (plantpredict.enumerations. WeatherDataProviderEnum
attribute), 50

(plantpre-

B

BACKTRACKING (plantpre-
dict.enumerations.BacktrackingType Enum
attribute), 45

BacktrackingTypeEnum
dict.enumerations), 45

BID (plantpredict.enumerations.PredictionStatusEnum
attribute), 49

BIFACIAL (plantpredict.enumerations.FacialityEnum
attribute), 47

BIRD_HULSTROM (plantpre-
dict.enumerations.AirMassModelType Enum
attribute), 45

(class in plantpre-

C

calculate_basic_data_at_conditions()
(plantpredict.module. Module method), 41

calculate_effective_irradiance_response ()
(plantpredict.module.Module method), 32

calculate_field_dc_power_from_dc_ac_ratio()

(plantpredict.powerplant. PowerPlant static
method), 19
calculate_post_to_post_spacing from_gcr ()

(plantpredict.powerplant. PowerPlant method),

ARCHIVED (plantpredict.enumerations. PredictionStatusEnum 18

attribute), 49

CAPE_CANAVERAL_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum

71

plantpredict-python Documentation, Release 1.0.5

attribute), 48

CDTE (plantpredict.enumerations.CellTechnologyType Enum

attribute), 45
CellTechnologyTypeEnum (class
dict.enumerations), 45
change_status () (plantpredict.inverter.Inverter
method), 41
change_status () (plantpre-
dict.prediction.Prediction method), 11
change_status () (plantpredict.weather. Weather
method), 25

in plantpre-

CUSTOM (plantpredict.enumerations.DataSourceEnum

attribute), 46

CUSTOM (plantpredict.enumerations.ESSChargeAlgorithmEnum
attribute), 47

CUSTOM (plantpredict.enumerations.ModuleShadingResponse Enum
attribute), 48

CUSTOMER (plantpredict.enumerations. WeatherDataProviderEnum
attribute), 51

Cz2010 (plantpredict.enumerations. WeatherDataType Enum
attribute), 51

CHARGE (plantpredict.enumerations. ESSDispatchC ustomCt[«)mandEnum

attribute), 47

CIGS (plantpredict.enumerations.CellTechnologyTypeEnum

attribute), 45

CircumsolarTreatment TypeEnum (class in plant-
predict.enumerations), 50

CLEAN_POWER_RESEARCH (plantpre-
dict.enumerations.WeatherDataProviderEnum
attribute), 50

CleaningFrequencyEnum
dict.enumerations), 45

clone () (plantpredict.prediction.Prediction method),
11

clone_block () (plantpredict.powerplant.PowerPlant
method), 16

CONSTANT_MONTHLY (plantpre-
dict.enumerations.SoilingModelType Enum
attribute), 50

ConstructionTypeEnum
dict.enumerations), 46

(class in plantpre-

(class in plantpre-

CONTRACT (plantpredict.enumerations. PredictionStatusEnum

attribute), 49

CPR_SOLAR_ANYWHERE (plantpre-
dict.enumerations.WeatherSourceTypeAPIEnum
attribute), 52

create () (plantpredict.inverter.Inverter method), 41

create () (plantpredict.module.Module method), 25

create () (plantpredict.powerplant. PowerPlant
method), 15

create () (plantpredict.prediction.Prediction method),
9

create () (plantpredict.project. Project method), 7

create () (plantpredict.weather.Weather method), 22

create_from_json () (plantpredict.inverter.Inverter
method), 41

create_from_json () (plantpredict.module.Module
method), 29

CSI_3_DIODE (plantpre-

dict.enumerations.DirectBeamShadingModelEnungown1oad ()

attribute), 46

DAILY (plantpredict.enumerations.CleaningFrequencyEnum
attribute), 45

DataSourceEnum (class in plantpre-
dict.enumerations), 46
DegradationModelEnum (class in plantpre-

dict.enumerations), 46

delete () (plantpredict.inverter.Inverter method), 41

delete () (plantpredict.module.Module method), 28

delete () (plantpredict.prediction.Prediction method),
10

delete () (plantpredict.project.Project method), 8

delete () (plantpredict.weather. Weather method), 23

DEVELOPMENT (plantpre-
dict.enumerations.PredictionStatusEnum
attribute), 49

DEWPOINT_TEMP (plantpre-
dict.enumerations.WeatherFileColumnTypeEnum
attribute), 52

DHI (plantpredict.enumerations. WeatherFileColumnType Enum

attribute), 51

DIFFUSE (plantpredict.enumerations.CircumsolarTreatmentType Enum
attribute), 50

DiffuseDirectDecompositionModelEnum
(class in plantpredict.enumerations), 46

DiffuseShadingModelEnum (class in plantpre-
dict.enumerations), 46

DIRECT (plantpredict.enumerations.CircumsolarTreatmentType Enum
attribute), 50

DirectBeamShadingModelEnum (class in plantpre-
dict.enumerations), 46

DIRINT (plantpredict.enumerations.DiffuseDirectDecompositionModel Eni
attribute), 46

DISCHARGE (plantpre-
dict.enumerations.ESSDispatchCustomCommandEnum
attribute), 47

DNT (plantpredict.enumerations. WeatherFile ColumnType Enum
attribute), 51

(plantpredict.weather. Weather method),

24

CSI_3_DIODE (plantpre- DRAFT PRIVATE (plantpre-
dict.enumerations.ModuleShadingResponseEnum dict.enumerations.LibraryStatusEnum at-
attribute), 48 tribute), 47

72 Index

plantpredict-python Documentation, Release 1.0.5

DRAFT_PRIVATE (plantpre-
dict.enumerations.PredictionStatusEnum
attribute), 49

DRAFT_SHARED (plantpre-

dict.enumerations.LibraryStatusEnum at-
tribute), 47

DRAFT_SHARED (plantpre-
dict.enumerations. PredictionStatusEnum
attribute), 49

E

ELMONTE_1988 (plantpre-

dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

ENERGY_AVAILABLE (plantpre-
dict.enumerations.ESSChargeAlgorithmEnum
attribute), 47

ENERGY_PLUS (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 51

EntityTypeEnum (class
dict.enumerations), 46

in plantpre-

generate_single_diode_parameters_default ()
(plantpredict.module.Module method), 30

generate_weather () (plantpre-
dict.weather.Weather method), 25

Geo (class in plantpredict.geo), 42

geo () (plantpredict.api.Api method), 7

GEO_MODEL_SOLAR (plantpre-

dict.enumerations. WeatherDataProviderEnum
attribute), 51

GEO_SUN_AFRICA (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 51

get () (plantpredict.inverter.Inverter method), 41

get () (plantpredict.module.Module method), 28

get () (plantpredict.powerplant.PowerPlant method),
15

get () (plantpredict.prediction.Prediction method), 10

get () (plantpredict.project. Project method), 8

get () (plantpredict.weather.Weather method), 23

get_all_predictions () (plantpre-
dict.project. Project method), 8
get_closest_station () (plantpre-

ERBS (plantpredict.enumerations. DiffuseDirectDecompositionModellighgshrae. ASHRAE method), 44

attribute), 46
ERROR (plantpredict.enumerations. ProcessingStatusEnum
attribute), 49
ESSChargeAlgorithmEnum (class
dict.enumerations), 47
ESSDispatchCustomCommandEnum (class in plant-
predict.enumerations), 47
export_to_excel () (in
dict.helpers), 44

in plantpre-

module plantpre-

F

FacialityEnum (class in plantpredict.enumerations),

47

FIXED_TILT (plantpre-
dict.enumerations.TrackingTypeEnum at-
tribute), 50

FRACTIONAL_EFFECT (plantpre-

dict.enumerations.DirectBeamShadingModel Enum

attribute), 46

FRACTIONAL_EFFECT (plantpre-

get_details ()
method), 24
get_elevation () (plantpredict.geo.Geo method), 42
get_inverter_list () (plantpre-
dict.inverter.Inverter method), 41
get_json() (plantpredict.powerplant. PowerPlant
method), 15
get_kva () (plantpredict.inverter.Inverter method), 41
get_location_info () (plantpredict.geo.Geo
method), 42
get_module_list ()
method), 30
get_nodal_data () (plantpre-
dict.prediction. Prediction method), 11
get_results_details () (plantpre-
dict.prediction. Prediction method), 10
get_results_summary () (plantpre-
dict.prediction.Prediction method), 10
(plantpredict.ashrae. ASHRAE

(plantpredict.weather. Weather

(plantpredict.module.Module

get_station()
method), 44

dict.enumerations.ModuleShadingResponseEnum 9t _time_zone () (plantpredict.geo.Geo method), 43

attribute), 48

FRANCE_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

G

generate_iv_curve ()
dict.module. Module method), 39

(plantpre-

generate_s ingle_diode_parameters_advanceglC

(plantpredict.module.Module method), 31

GHI (plantpredict.enumerations. WeatherFile ColumnType Enum
attribute), 51
GLASS_BACKSHEET (plantpre-
dict.enumerations. ConstructionType Enum
attribute), 46
GLASS_GLASS (plantpre-
dict.enumerations.ConstructionTypeEnum
attribute), 46
?BAL (plantpredict.enumerations.LibraryStatusEnum
attribute), 47

Index

73

plantpredict-python Documentation, Release 1.0.5

GLOBAL_FED (plantpre-
dict.enumerations. WeatherDataProviderEnum

attribute), 51

GLOBAL_RETIRED (plantpre-
dict.enumerations.LibraryStatusEnum at-
tribute), 47

GROUND_CORRECTED (plantpre-

dict.enumerations.WeatherDataType Enum
attribute), 51

H

HALF_HOUR (plantpre-
dict.enumerations. WeatherTimeResolution
attribute), 52

HAY (plantpredict.enumerations. TranspositionModel Enum
attribute), 50

HEAT_BALANCE (plantpre-

dict.enumerations.ModuleTemperatureModel EnumiE TEONORM

attribute), 48

HELIO_CLIM (plantpre-
dict.enumerations.WeatherDataProviderEnum
attribute), 51

HORIZONTAL_TRACKER (plantpre-
dict.enumerations.TrackingType Enum at-
tribute), 50

HOUR (plantpredict.enumerations. WeatherTimeResolution
attribute), 52

IncidenceAngleModel TypeEnum (class in plant-
predict.enumerations), 47

Inverter (class in plantpredict.inverter), 41

INVERTER (plantpredict.enumerations.EntityTypeEnum
attribute), 47

inverter () (plantpredict.api.Api method), 7

K

KASTEN_SANDIA (plantpre-
dict.enumerations.AirMassModelType Enum
attribute), 45

L

LANDSCAPE (plantpre-
dict.enumerations.ModuleOrientationEnum
attribute), 48

LGIA_EXCESS (plantpre-
dict.enumerations.ESSChargeAlgorithmEnum
attribute), 47

LibraryStatusEnum (class
dict.enumerations), 47

in plantpre-

LINEAR (plantpredict.enumerations.ModuleShadingResponse Enum

attribute), 48
LINEAR_AC (plantpre-
dict.enumerations.DegradationModel Enum

attribute), 46
LINEAR_DC (plantpre-
dict.enumerations.DegradationModelEnum

attribute), 46

load_from_excel () (in module plantpre-
dict.helpers), 44

MANUFACTURER (plantpre-
dict.enumerations.DataSourceEnum attribute),

46

MEASURED (plantpredict.enumerations. WeatherDataType Enum

attribute), 51

(plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 50

METEONORM (plantpre-
dict.enumerations. WeatherSourceTypeA PIEnum
attribute), 52

MINUTE (plantpredict.enumerations. WeatherTimeResolution
attribute), 52

Module (class in plantpredict.module), 25

MODULE (plantpredict.enumerations.EntityTypeEnum at-
tribute), 47

module () (plantpredict.api.Api method), 7

MODULE_FILE_DEFINED (plantpre—
dict.enumerations.DirectBeamShadingModel Enum
attribute), 46

ModuleDegradationModelEnum (class in plantpre-
dict.enumerations), 47

ModuleOrientationEnum
dict.enumerations), 48

ModuleShadingResponseEnum (class in plantpre-
dict.enumerations), 48

ModuleTemperatureModelEnum (class in plantpre-
dict.enumerations), 48

(class in plantpre-

ModuleTypeEnum (class in plantpre-
dict.enumerations), 48

MONOFACIAL (plantpre-
dict.enumerations.FacialityEnum attribute),
47

MONTHLY (plantpredict.enumerations.Cleaning FrequencyEnum

attribute), 45

MONTHLY_ OVERRIDE (plantpre-
dict.enumerations.SpectralShiftModel Enum
attribute), 50

LINEAR (plantpredict.enumerations.DirectBeamShadingMdetniptantpredict.enumerations. WeatherDataTypeEnum

attribute), 46

attribute), 51

LINEAR (plantpredict.enumerations.ModuleDegradationModel Enum

attribute), 48

74

Index

plantpredict-python Documentation, Release 1.0.5

N attribute), 52
NA (plantpredict.enumerations.WeatherPLevelEnum at- NSRDB_PSM (plantpre-
tribute), 52 dict.enumerations.WeatherSourceTypeAPIEnum
NASA (plantpredict.enumerations. WeatherDataProviderEnum attribute), 52
attribute), 51 NSRDB_ SUNY (plantpre-
NASA (plantpredict.enumerations. WeatherSourceTypeA PIEnum dict.enumerations. WeatherSourceTypeAPIEnum
attribute), 52 attribute), 52
NGAN_DEWPOINT (plantpre- NTYPE_MONO_CSI (plantpre-
dict.enumerations.SpectralWeatherType Enum dict.enumerations.CellTechnologyTypeEnum
attribute), 50 attribute), 45
NGAN_PWAT (plantpre- 0O
dict.enumerations.SpectralWeatherType Enum
attribute), 50 ONE_DIODE (plantpre-
NGAN_RH (plantpredict.enumerations.SpectralWeatherTypeEnum dict.enumerations.PVModelTypeEnum at-
attribute), 50 tribute), 49
NO_SPECTRAL_SHIFT (plantpre- ONE_DIODE_RECOMBINATION (plantpre-
dict.enumerations.SpectralShiftModel Enum dict.enumerations.PVModelTypeEnum at-
attribute), 50 tribute), 49
NOCT (plantpredict.enumerations.ModuleTemperatureModetB¥Emb IODE_RECOMBINATION_NONLINEAR (plant-
attribute), 48 predict.enumerations.PVModelTypeEnum
NON_LINEAR_DC (plantpre- attribute), 49
dict.enumerations.DegradationModel Enum ONE_PARAM_PWAT_OR_SANDIA (plantpre-
attribute), 46 dict.enumerations.SpectralShiftModel Enum
NONE (plantpredict.enumerations.CleaningFrequencyEnum attribute), 50
attribute), 45 optimize_series_resistance () (plantpre-
NONE (plantpredict.enumerations.DegradationModel Enum dict.module.Module method), 34
attribute), 46 OSAGE_1988 (plantpre-
NONE (plantpredict.enumerations. DiffuseDirectDecompositionModel Idigtenumerations. PerezModel CoefficientsEnum
attribute), 46 attribute), 48
NONE (plantpredict.enumerations. DiffuseShadingModel Enu@iT HER (plantpredict.enumerations. WeatherDataProvider Enum
attribute), 46 attribute), 51

NONE (plantpredict. enumemtions.DirectBeamShadingModeEnum
attribute), 46
NONE (plantpredict.enumerations. ESSDispatchCustomCommawd{glunmpredict.enumerations. WeatherPLevel Enum at-

attribute), 47 tribute), 52
NONE (plantpredict.enumerations.IncidenceAngleModelTyp&Erauiplantpredict.enumerations. WeatherPLevel Enum at-
attribute), 47 tribute), 52
NONE (plantpredict.enumerations.ModuleShadingResponseEgan(plantpredict.enumerations. WeatherPLevel Enum at-
attribute), 48 tribute), 52
NONE (plantpredict.enumerations. ProcessingStatusEnum P95 (plantpredict.enumerations. WeatherPLevelEnum at-
attribute), 49 tribute), 52
NONE (plantpredict.enumerations.SoilingModelTypeEnum P99 (plantpredict.enumerations. WeatherPLevelEnum at-
attribute), 50 tribute), 52
NONE (plantpredict.enumerations.SpectralWeatherTypeEnumparse_ond_file () (plantpredict.inverter.Inverter
attribute), 50 method), 41
NONLINEAR (plantpre- parse_pan_file () (plantpredict.module.Module
dict.enumerations.ModuleDegradationModel Enum method), 29
attribute), 48 PEREZ (plantpredict.enumerations.TranspositionModel Enum
NREL (plantpredict.enumerations. WeatherDataProviderEnum attribute), 50
attribute), 50 PerezModelCoefficientsEnum (class in plantpre-
NSRDB (plantpredict.enumerations. WeatherDataProviderEnum dict.enumerations), 48
attribute), 51 PHOENIX_1988 (plantpre-
NSRDB_MTS2 (plantpre- dict.enumerations.PerezModelCoefficientsEnum
dict.enumerations. WeatherSourceTypeAPIEnum attribute), 48

Index 75

plantpredict-python Documentation, Release 1.0.5

PHOTON (plantpredict.enumerations.DataSourceEnum
attribute), 46

attribute), 51

PTYPE_MONO_CSI_BSF (plantpre-

PHYSICAL (plantpredict.enumerations.IncidenceAngleModelType Enulict.enumerations. CellTechnologyType Enum

attribute), 47
PLANT_PREDICT (plantpre-

dict.enumerations.PerezModelCoefficientsEnum

attribute), 48
plantpredict.api (module), 7
plantpredict.ashrae (module), 44
plantpredict.enumerations (module), 45
plantpredict.geo (module), 42
plantpredict.helpers (module), 44
plantpredict.inverter (module), 41
plantpredict.module (module), 25
plantpredict.powerplant (module), 11
plantpredict.prediction (module), 9
plantpredict.project (module), 7
plantpredict.weather (module), 22

attribute), 45
PTYPE_MONO_CSI_PERC (plantpre-
dict.enumerations.CellTechnologyType Enum
attribute), 45
PVModelTypeEnum (class in
dict.enumerations), 49
(plantpredict.enumerations.DataSourceEnum
attribute), 46

plantpre-

PVSYST

PWAT (plantpredict.enumerations. WeatherFileColumnType Enum

attribute), 52

Q

QUARTERLY (plantpre-
dict.enumerations.Cleaning FrequencyEnum
attribute), 45

POATI (plantpredict.enumerations. WeatherFileColumnType EgumuED (plantpredict.enumerations. ProcessingStatusEnum

attribute), 52

POLY CSI_BSF (plantpre-
dict.enumerations.CellTechnologyType Enum
attribute), 45

POLY_CSI_PERC (plantpre-
dict.enumerations.CellTechnologyType Enum
attribute), 45

PORTRAIT (plantpredict.enumerations.ModuleOrientationEnum

attribute), 48
PowerPlant (class in plantpredict.powerplant), 11
powerplant () (plantpredict.api.Api method), 7
Prediction (class in plantpredict.prediction), 9

PREDICTION (plantpre-
dict.enumerations.EntityTypeEnum attribute),
47

prediction () (plantpredict.api.Api method), 7

PredictionStatusEnum (class in plantpre-
dict.enumerations), 49

PredictionVersionEnum (class in plantpre-

dict.enumerations), 49

attribute), 49

RAIN (plantpredict.enumerations. WeatherFileColumnType Enum

attribute), 52
REAR_POAI (plantpre-
dict.enumerations. WeatherFileColumnType Enum
attribute), 52

REINDL (plantpredict.enumerations. DiffuseDirectDecompositionModel Eni

attribute), 46

RELATIVE_HUMIDITY (plantpre-
dict.enumerations. WeatherFileColumnTypeEnum
attribute), 51

RETIRED (plantpredict.enumerations.LibraryStatusEnum
attribute), 47

run () (plantpredict.prediction.Prediction method), 10

RUNNING (plantpredict.enumerations. ProcessingStatusEnum

attribute), 49

PRESSURE (plantpredict.enumerations. WeatherFi ileColumnSYXpeEnu

attribute), 52

process_iv_curves () (plantpre-
dict.module.Module method), 38

process_key_iv_points () (plantpre-
dict.module. Module method), 35

ProcessingStatusEnum (class in plantpre-

dict.enumerations), 49

Project (class in plantpredict.project), 7

PROJECT (plantpredict.enumerations.EntityTypeEnum
attribute), 47

project () (plantpredict.api.Api method), 7

ProjectStatusEnum (class in
dict.enumerations), 49

PSM (plantpredict.enumerations. WeatherDataType Enum

plantpre-

ND IA”(;?lantpredict. enumerations.IncidenceAngleModelType Enum

attribute), 47

SANDIA (plantpredict.enumerations.ModuleTemperatureModel Enum

attribute), 48

SANDIA_COMPOSITE_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

SANDIA_DATABASE (plantpre-
dict.enumerations.DataSourceEnum attribute),
46

SATELLITE (plantpre-

dict.enumerations. WeatherDataType Enum
attribute), 51

76

Index

plantpredict-python Documentation, Release 1.0.5

SCHAAR_PANCHULA (plantpre-
dict.enumerations.DiffuseShadingModel Enum
attribute), 46

search () (plantpredict.project.Project method), 8

search () (plantpredict.weather. Weather method), 24

SEASONAL_TILT (plantpre-
dict.enumerations.TrackingTypeEnum at-
tribute), 50

SINGLE_DIODE (plantpre-
dict.enumerations.ModuleTypeEnum attribute),
48

SODA (plantpredict.enumerations. WeatherDataProviderEnum

attribute), 51

SOILING_LOSS (plantpre-

dict.enumerations. WeatherFileColumnTypeEnum TRUE_TRACKING

attribute), 52

SoilingModelTypeEnum (class in plantpre-
dict.enumerations), 50
SOLAR_GIS (plantpre-

dict.enumerations. WeatherSourceTypeAPIEnum
attribute), 52

SOLAR_PROSPECTOR (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 51

SOLAR_RESOURCE_ASSESSMENT (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 51

THREE_TIER (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 50

THREE_TIER_VAISALA (plantpre—
dict.enumerations. WeatherDataProviderEnum
attribute), 51

TMY (plantpredict.enumerations. WeatherDataTypeEnum
attribute), 51

TMY 3 (plantpredict.enumerations. WeatherDataType Enum
attribute), 51

TrackingTypeEnum (class

dict.enumerations), 50

TranspositionModelEnum (class
dict.enumerations), 50

in plantpre-

in plantpre-

(plantpre-
dict.enumerations.Backtracking Type Enum
attribute), 45

TWO_DIMENSION (plantpre-
dict.enumerations.DirectBeamShadingModel Enum
attribute), 46

TWO_PARAM_PWAT_AND_AM (plantpre-
dict.enumerations.SpectralShiftModel Enum
attribute), 50

U

UNIVERSITY_ OF_GENEVA (plantpre-
dict.enumerations.DataSourceEnum attribute),

SOLARGIS (plantpredict.enumerations. WeatherDataProviderEnum 46

attribute), 51

SOLCAST (plantpredict.enumerations. WeatherDataProvider Enum

attribute), 51
SpectralShiftModelEnum (class
dict.enumerations), 50
SpectralWeatherTypeEnum (class in plantpre-
dict.enumerations), 50
STEPPED_AC (plantpre-
dict.enumerations.DegradationModel Enum
attribute), 46

in plantpre-

UNKNOWN (plantpredict.enumerations.LibraryStatusEnum

attribute), 47

UNKNOWN (plantpredict.enumerations. WeatherSourceTypeAPIEnum
attribute), 52

UNKNOWN (plantpredict.enumerations. WeatherTimeResolution
attribute), 52

UNSPECIFIED (plantpre-
dict.enumerations.ModuleDegradationModel Enum
attribute), 48

update () (plantpredict.inverter.Inverter method), 41

SUCCESS (plantpredict.enumerations. ProcessingStatusEnumipdate () (plantpredict.module.Module method), 29

attribute), 49

SUNY (plantpredict.enumerations. WeatherDataType Enum
attribute), 51

SYNTHETIC_MONTHLY (plantpre-
dict.enumerations. WeatherDataType Enum
attribute), 51

T

TABULAR_IAM (plantpre-
dict.enumerations.IncidenceAngleModelTypeEn
attribute), 47

TEMP (plantpredict.enumerations. WeatherFileColumnType Enum

attribute), 51
TGY (plantpredict.enumerations. WeatherDataTypeEnum
attribute), 51

update () (plantpredict.powerplant. PowerPlant
method), 15
update () (plantpredict.prediction.Prediction method),

10
update () (plantpredict.project. Project method), 8
update () (plantpredict.weather. Weather method), 24
update_from_json () (plantpre-
dict.powerplant. PowerPlant method), 15
upload_ond_file () (plantpredict.inverter.Inverter

um method), 41
upload_pan_file () (plantpredict.module.Module
method), 29

USA_COMPOSITE_1988 (plantpre-
dict.enumerations.PerezModelCoefficientsEnum
attribute), 48

Index

77

plantpredict-python Documentation, Release 1.0.5

V

VERSION_10 (plantpre-
dict.enumerations.PredictionVersionEnum
attribute), 49

VERSION_11 (plantpre-
dict.enumerations. PredictionVersionEnum
attribute), 49

VERSION_3 (plantpre-
dict.enumerations.PredictionVersionEnum
attribute), 49

VERSION_4 (plantpre-
dict.enumerations. PredictionVersionEnum
attribute), 49

VERSION_5 (plantpre-
dict.enumerations.PredictionVersionEnum
attribute), 49

VERSION_6 (plantpre-
dict.enumerations. PredictionVersionEnum
attribute), 49

VERSION_7 (plantpre-
dict.enumerations. PredictionVersionEnum
attribute), 49

VERSION_38 (plantpre-
dict.enumerations.PredictionVersionEnum
attribute), 49

VERSION_9 (plantpre-
dict.enumerations. PredictionVersionEnum
attribute), 49

W

WIND_DIRECTION (plantpre-
dict.enumerations. WeatherFileColumnTypeEnum
attribute), 52

WIND_LOGICS (plantpre-
dict.enumerations. WeatherDataProviderEnum
attribute), 50

WINDSPEED (plantpre-
dict.enumerations. WeatherFileColumnTypeEnum
attribute), 51

Y

YEARLY (plantpredict.enumerations.Cleaning FrequencyEnum
attribute), 45

WARRANTY (plantpredict.enumerations. PredictionStatusEnum

attribute), 49

Weather (class in plantpredict.weather), 22

WEATHER (plantpredict.enumerations. EntityType Enum
attribute), 47

weather () (plantpredict.api.Api method), 7

WEATHER_FILE (plantpre-
dict.enumerations.SoilingModelType Enum
attribute), 50

WeatherDataProviderEnum (class in plantpre-
dict.enumerations), 50

WeatherDataTypeEnum
dict.enumerations), 51

WeatherFileColumnTypeEnum (class in plantpre-
dict.enumerations), 51

WeatherPLevelEnum (class
dict.enumerations), 52

WeatherSourceTypeAPIEnum (class in plantpre-
dict.enumerations), 52

(class in plantpre-

in plantpre-

WeatherTimeResolution (class in plantpre-
dict.enumerations), 52
WHITE_BOX_TECHNOLOGIES (plantpre-

dict.enumerations. WeatherDataProviderEnum
attribute), 51

78

Index

	Contents
	Installation & Setup
	API Authentication
	SDK Reference
	Example Usage
	Release Notes

	Indices and tables
	Python Module Index
	Index

